Eco 5316 Time Series Econometrics
Lecture 24 State Space Models

1/39

Motivation

>

| 4

time series models in economics and finance may often be represented in
state space form

state space model consists of a measurement equation relating the observed
time series y, to an unobserved state vector s;: and a state transition
equation that describes the evolution of the state vector s; over time

state-space model provides a flexible approach to time series analysis,
simplifying maximume-likelihood estimation and handling of missing values

2/39

Local Level Model

» consider time series y; satisfying

ye = petee e~ N(0,07)
pres = petGe Ge~ N(O,07)

where E(:(;) = 0 and p is either known or drawn from known distribution
» here u; is an unobserved random walk, only y; is observable, with noise ¢,

» the simple model above could be used to model either log of an asset price,
log of its volatility, detrended log of national income, detrended log of labor
productivity ...

» this model is an example of a linear Gaussian state space model

3/39

Local Level Model

note that in the local level model

» since y; = Z;Zl (j+e¢ innovations (; have a permanent effect on y;, but
innovations &; have only a temporary effect on y;

» if 02 = 0 then y; follows a pure random walk

> if 02 = 0 then y; fluctuates around constant mean

4/39

Local Level Model

o;=1and o’ =0.04

——

2 —_ %

0 25 50 75 100

5/39

Local Level Model

» note that the Local Level Model implies that
Yer1 = Yeter1i—er+Ce

and so
Var(Ay:) = 202+ a7

cov(Aye, Aye—1) = —o?
cov(Ay, Ay;—j) =0 forj>1
> the above implies that y; follows an ARIMA(0,1,1) model

Yt =Yi—1+ar+b61a:1

since
Var(Ay:) = (1+9%)0’§

cov(Aye, Ayr—1) = 910§
cov(Ays, Ay:—;j) =0 forj>1

and by setting 6; to the solution of 1+67 —61(2+07/02) = 0 we obtain
exactly the above variance and covariances

6/39

Preview: Filtering, Prediction, Smoothing

» suppose that we have information F; = {y1,,...,¥:}

» if parameters o, o¢ of the Local Level Model are known, the statistical
inference we are interested in entails the following:

> filtering: recovering y: and removing measurement error ¢;

v

prediction: forecasting p:+n and yipn for h >0

» smoothing: recovering p; for j < t

7/39

Preview: Filtering, Prediction, Smoothing

notation

» i;; = E(pe|Fj) is the conditional mean of 1, given F;

» Y,; = Var(u:|F;) is the conditional variance of x: given F;
> y.; = E(y:|F;) is the conditional mean of y; given F;

» Vi = ¥t — -1 is the one step ahead forecast error

» V; = Var(v¢|F:—1) is the variance of the one step ahead forecast error

8/39

Local Level Model

for the Local Level Model we have

» one step ahead forecast
Yeje—1 = E(ye|Fe—1) = E(petee|Fe—1) = peje—1
» one step ahead forecast error
Vi = Yt—=Yt|t—1 = Yt — Ht|t—1
» variance of the one step ahead forecast error

Vt = Var(vt|Ft,1) = Var(yt—yt‘t_1|Ft,1) = Var(yt—ut|t_1|Ft,1)
= Var(ut+5t—ut|t_1|/:t71) = Var(ut_,u/ﬂt—llFf*l)—’—Var(st‘Fffl)
= zt\t—lJFUg

9/39

Kalman

>

>

Filter for Local Level Model

goal of Kalman filter is to obtain one step ahead predictions by updating the
current estimate of state variable when new data point becomes available

since innovations &; and (; are Gaussian the joint distribution of (p¢, v¢)’
given F;_; is also Gaussian

Mt ~ NP1 Teem1 Teje-1
Vel 0 |"[Zge—1 Wi

conditional distribution of 1, given F; is thus N(fiy¢, X)) Where
Heje = Peje—1+Keve
):t\t = zt\tfl(l_Kt)

with Kt = Zt‘t,l/Vt
finally, given ;¢ and X;; the conditional mean and variance for period
t+1 state are

pesae = E(petGelFe) = E(pe| Fe) = pe
Yeipe = Var(peri|Fe) = Var(ue| Fe)+ Var(G) = Zoe+ot

10/39

Kalman Filter for Local Level Model
summary of Kalman Filter procedure for local level model:

» parameters o2 and 0(2: are given

> initial state y; is assumed to be distributed as N(p1j0, X1)0)

» suppose that in period t given previous information F;_; we have
conditional mean p;—1 and conditional variance ¥;;_;

> after observing y: we have F; and obtain conditional mean i;y1); and
conditional variance ¥;,1; using

Vi = Yt — Ht|t—1
Ve = Zt\tfl‘i’ag
K = z1:\t—1/Vt

Mei)e = Meje—1+Keve
zt+1|t = zt\t—l(l—Kt)‘i'Ug

z):|):—1
Zt\t—1+o'£'
temporary disturbance ¢; is large then K; is small and even a large forecasting
error leads to only a small update from fi;e_1 to pue;

K: is called Kalman gain; note that K; = thus if the variance of

11/39

Kalman Filter for Local Level Model - Nile Data

see https://cran.r-project.org/web/packages/KFAS /vignettes/KFAS.pdf for
details and examples how to define, estimate and simulate state-space models
using KFAS package

library(magrittr)
library (KFAS)

y_ts <- datasets::Nile

specify the state-space local level model

y_LLM <- SSModel(y_ts ~ SSMtrend(degree = 1, Q = list(NA)) , H = NA)

maxzimum likelihood estimation of paramaters of and H (i.e. variances of the two inovations)
y_LLM_ML <- fitSSM(inits = log(rep(var(y_ts)/1000, 2)) , model = y_LLM, method = "BFGS")

run Kalman Filter and Smoother with estimated parameters

y_LLM_KFS <- KFS(y_LLM_ML$model)

construct 90/ confidence interval for filtered state
y_KF <- predict(y_LLM_ML$model, interval = "confidence", level = 0.9, filtered = TRUE)
y_KF[1,] <- NA

par(mfrow = c(2,2), cex = 0.8)
cbind(y_ts, y_KF) %>%

plot.ts(plot.type = "single", col = c(1,4,4,4), lwd = c(1,2,1,1), 1ty = c(1,1,2,2))
legend ("topright", legend = c("data","filtered state","90% confidence interval"),

col = c(1,4,4), 1ty = c(1,1,2,2), lwd = c(1,2,1,1), bty = "n", cex=0.9)

c(y_LLM_KFS$v[-11) %>% ts(start = 1871) %>

plot(main = expression(paste("forecast error ", v["t"])))
abline (h=0,col="grey")
c(y_LLM_KFS$P) [-1] %>% ts(start = 1871) %>%

plot(main = expression(paste("variance of state ", Sigma["t|t-1"1)))
c(y_LLM_KFS$F) [-1] %>% ts(start = 1871) %>%

plot(main = expression(paste("variance of forecast error ", V["t"1)))

12/39

Kalman Filter for Local Level Model - Nile Data

forecast error v,

g
8
S
l — A
° ‘. — filtered state py;
S -~ 90% confidence interval jiy_; + 1.64{y; o
8 4
- «
g M [l\ AJ\A M
g o 1l 1l Al Mg AL
s
3
® o
s
S
3)
S
8
3
8
<
T T T T T v T T T T T
1880 1900 1920 1940 1960 1880 1900 1920 1940 1960
variance of state Ly variance of forecast error V;
T o
8 4
g | &
5
bl .|
7 Q
8 4
g | 8
g
E i
T o
S 4
g | §
3
T T T T T T T T T T
1880 1900 1920 1940 1960 1880 1900 1920 1940 1960

13/39

Kalman Smoothing for Local Level Model

» smoothing is essentially a backward estimation of {u1,...,u7} given the
information set Fr = {y1,...,yr}

> the objective is thus to obtain conditional distributions N (i 7, X¢j7) for
t=T-1,T-2,...,1 the procedure is going backward

» 7 is called smoothed state and X7 smoothed state variance

» applying the properties of the conditional normal distribution one can derive
the following backward recursive algorithm to compute smoothed state
variables: using initial value gr =0 and My =0 calculate for t = T,...,1

g1 = Vi v+ (1—Ki)g:
He| T = fheje—1+2te—1Gt—1
M 1 =V, 4+ (1—K:)* M,
PINEEED NININE 3Ry 7 Y

14/39

Kalman Filtering and Smoothing for Local Level Model - Nile Data

construct 90/ confidence intervals for smoothed state
y_KS <- predict(y_LLM_ML$model, interval = "confidence", level = 0.9)

par(mfrow = c(1,1), cex = 0.8)
cbind(y_ts, y_KF, y_KS) %>%
plot.ts(plot.type = "single", col = c("black","blue","blue","blue","red","red","red"),
lwd = c¢(1,2,1,1,2,1,1), 1ty = c¢(1,1,2,2,1,2,2), xlab = "", ylab = "", main = "")

legend("topright", legend = c(expression(paste("data ", y["t"]1)),
expression(paste("filtered state ", mu["t[t-1"])),
expression(paste("smoothed state ", mu["t|T"]))),

col = c("black","blue","red"), 1ty = 1, lwd = 2, bty = "n")

15/39

Kalman Filtering and Smoothing for Local Level Model - Nile Data
note that

> smoothed state variable ;|7 is smoother then filtered state variable pi¢;—;

» confidence intervals for the smoothed state variables are also narrower than
those of the filtered state variables

1400
L

— datay;
— filtered state py-1
—— smoothed state 7

1200

1000
I

800
I

600
I

16/39

Local Linear Trend Model

» consider time series y; satisfying

Vi = Ut tEt Et ~ N(O,G?)
per1 = Be+pe+Ce Ce o~ N(O,Ug)
Ber1 = Be+n: Ne ~ N(O,af,)

where ¢, (¢, 1+ are independent at all lags and leads, and pu1, 51 are either
known or from known distribution

> if af, =0, a% > 0 then y; is random walk with drift 81

> if 03] =0, a% = 0 then y; fluctuates around a linear trend with slope 31 and
intercept p1

> if 0727 >0, aé = 0 then y; fluctuates around a non-linear trend

17/39

Local Linear Trend Model

2_ _
07=0 and 6;=1

- W
— %

10

1234567

2_ 2_
0,=0.01 and 6,=0

15

T w
— %

10
I

18/39

Linear Gaussian State Space Model

» local level and local linear trend models are particular cases of linear
Gaussian state space model

» linear Gaussian state space model implemented in KFAS package

yt = Ztst+€t Et N(O, Ht)
Ser1 = Tese+Rem, n. ~ N(0, Q)

where

Y. is an kx1 vector of observations

s¢ is an mx 1 state vector

T: is an mx m matrix

R: is an m X n matrix

Z: is an kX m matrix

17, is an nx 1 vector

et is an kx 1 vector
with initial state s1 ~ N(p)0, 1)0) and E(e¢n;) = 0 so innovations in
state transition equation and measurement equation are independent

» system matrices T, R:, Z:, Q; and H; can be functions of some
parameters 6 that are estimated

» in many cases system matrices are actually time invariant

19/39

Linear Gaussian State Space Model

» Kalman Filter algorithm, given initial values Hijo and ;)0
Ve =Y, —ZtSt)t—1
Vi=Z:%y 1Z:+H:
K: = tht|tflzltvt_1
Sev1fe = TeSeje—1+Keve
Zt+1\t = tht|t71(Tt*Kfzf)/+RtQtR;

» this can be collapsed into two equations

-1
Sev1)t = TtSeje—1+ tht|tflz;(tht\tflz;‘i’Ht) (ytfztst\tfl)

-1
zt+1\t = tht\t—l T;_ tht\t—lz/t(ztzt|t—1z/t+Hlt) tht\t—l T/t+RtQtR;

20/39

Linear Gaussian State Space Model

notation
Tsay KFAS

state St (s 773

conditional mean for state Se|t—1 a;

smoothed state ST Qi

conditional variance of state X1 P,

variance of smoothed state T Vv,

variance of forecast error V. F.

sample size T n

measurements Y. is kx1 vector y,is px1 vector
state s is mx1 vector «; is mx1 vector

transition equation innovation

1, is nx 1 vector

7, is kx1 vector

21/39

Application: CAPM with Time-Varying Coefficients

» state-space model framework allows to easily estimate models with time
varying parameters

» consider for example a capital asset pricing model with with time-varying
intercept and slope

re = o+ Perv,e e Et ~ N(0,0'g)
o1 = o+ Ce ~ N(O,o‘é)
Br+1 = Be+ne Nt ~ N(O,a%)

where r; is excess return of an asset, and ry; is excess return of the market

» to obtain state-space representation rewrite above model in matrix form

re [1 I’M,t:l |:gt:| +et Et n~ N(0,0’g)
t

Q41 _ 1 0 it 1 O Cl‘ C_,-t 0 0'2 0

i o A e A R R)
and let Y= n1t, St = (OZt,/Bt),, Tt = Rt = I2, Zt = [1, r[\/]7t], Ht = O'g,
0. — dinglot)

22/39

Application: CAPM with Time-Varying Coefficients

load data on excess returns from January 1990 to December 2003

http://faculty.chicagobooth.edu/ruey. tsay/teaching/fts3/m-excess-c10sp-9003. txt

er_ts <- read.table("m-excess-c10sp-9003.txt", header = TRUE) %>’ ts(start = c(1990, 1), frequency = 12)
extract excess returns for Genmeral Motors and for SE&P 500

gm <- er_ts[, "GM"]

sp500 <- er_ts[, "SP5"]

get number of observatons

tobs <- length(sp500)

construct system matrices for state-space model - a CAPM with time variable alpha and betta
Zt <- array(rbind(rep(1, tobs), sp500), dim = c(1, 2, tobs))

Ht <- matrix(NA)

Tt <- diag(2)

Rt <- diag(2)

Qt <- matrix(c(NA, 0, 0, NA), 2, 2)

use diffuse prior for initial state

Plinf <- diag(2)

define state-space CAPM model

y_SS <- SSModel(gm ~ -1 + SSMcustom(Z = Zt, T = Tt, R = Rt, Q = Qt, Plinf = Plinf), H = Ht)
estimate variances of innovations using maximum likelihood

y_SS_ML <- £itSSM(y_SS, inits = c(0.001,0.001,0.001), method = "BFGS")

Kalman filtering and smoothing, with parameters in { and H set to mazimum likelihood estimates
y_SS_KFS <- KFS(y_SS_ML$model)

extract filtered and smoothed alpha and betta

alpha.KFS <- cbind(y_SS_KFS$al, 1], y_SS_KFS$alphahat[, 1])
betta.KFS <- cbind(y_SS_KFS$a[, 2], y_SS_KFS$alphahat[, 2])

23/39

Application: CAPM with Time-Varving Coefficients
par (mfcol=c(2,2), mar=c(2,4,2,1))
plot filtered and smoothed state alpha and betta
plot.ts(alpha.KFS, plot.type="single", xlab="",ylab="alpha", col=c("blue","red"), lwd=2)
legend("topright", c("filtered","smoothed"), col=c("blue","red"), lwd=2, cex=0.7, bty="n")
plot.ts(betta.KFS, plot.type="single", xlab="",ylab="betta", col=c("blue","red"), lwd=2)
legend("topright", c("filtered","smoothed"), col=c("blue","red"), lwd=2, cex=0.7, bty="n")
plot smoothed state alpha and betta
plot.ts(alpha.KFS[,2], plot.type="single", xlab="",6ylab="alpha", col="red", lwd=2)
plot.ts(betta.KFS[,2], plot.type="single", xlab="",ylab="betta", col="red", lwd=2)

J—— S
b — smoothed 8
] A
© 8
s | >
] s
© i ©
£ £ g
-3 -3
T o]
g
° g
i Vs < 4
iy :
& S
8
S
T T T T T T T T T T T T T T T T T
1990 1992 1994 1996 1998 2000 2002 2004 1990 1992 1994 1996 1998 2000 2002 2004
g — fitered 5
«~ — smoothed -
- m
e i
8 |
g 3 g -
] 3 i
2 il 2
©
< 8 |
c 7 -
c | o
° = T T T T T T T S T T T T T T T
1990 1992 1994 1996 1998 2000 2002 2004 1990 1992 1994 1996 1998 2000 2002 2004

24 /39

Application: CAPM with Time-Varying Coefficients

> note that smoothed states oy |7 and ;7 are much smoother than filtered
state ay¢—1 and By:_1, since Kalman smoothing uses information from the
whole sample, but Kalman filtering only information up to period t

25 /39

Unobserved Components Model

» goal: decomposition of time series into trend, seasonal and irregular
component
Yt = Ut +Yet+Er
where
¥t is the observed data
u is an slowly changing component (trend)
vt is periodic seasonal component
et is irregular disturbance component
and u¢, ve, €+ are modeled explicitly as stochastic processes

» note that local level model and local linear trend model are special cases of
the unobserved components model with no seasonal component ~;

» seasonal component can be modeled using time varying dummy variables as
(1+B+...+Bs_1)'yt+1 = Wt Wt ~ N(O,Ui)

so that in expectation the sum of the seasonal effects captured by dummy
variables ¢, Ye—1,...,Vt—s+1 IS zero

26 /39

Application: Quarterly earnings per share of Johnson & Johnson

» local linear trend model with seasonal component

Yt = petye+ere EtNN(O JE)
vl = Be+pe+Ce ¢t ~ N(O, ‘74)
Be1 = Be+ne ne ~ N(O, Un)
(14+B+B*+B*)yer1 = we we ~ N(0,02)
» seasonal dummy approach: ~v¢11 = — ij-:o Ye—j+wt

27 /39

Application: Quarterly earnings per share of Johnson & Johnson

» to obtain state-space representation rewrite the above model in matrix form

Mt
Bt
yt=[10100] ve |+ e
Yt—1
Yt—2
~ Y ~~
Y Z, St Et
el 11 0 0 07 [pr 100
Br+1 01 0 0 O Bt 010 Ct
Vi+1 =100 -1 -1 -1 Yt + (001 Nt
Yt 00 1 0 O Ye—1 000 we
Ye—1 00 O 1 O0J Lyt—2 000
—_—— — —— N~
St+1 T. St R. M
where
Et ~ N(O, O'g)
~~
H.
e 0 a§ 0 0
ne| ~N 0],]0 U% 0
we 0 0 0 o2
—_—

28/39

Application: Quarterly earnings per share of Johnson & Johnson

import quarterly data on earnings per share for Johnson and Johnson available at

http://faculty.chicagobooth.edu/ruey. tsay/teaching/fts3/q-jnj. txt

y_ts <- scan(file = "http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/q-jnj.txt") %>%
ts(start = c(1960, 1), frequency = 4) %>% log()

define a local level model with seasonal component
y_LLT <- SSModel(y_ts ~ SSMtrend(degree = 2,Q = rep(list(NA), 2))
+ SSMseasonal(period = 4,sea.type = "dummy", Q = NA), H = NA)

estimate model parameters using mazimum likelihood
y_LLT_ML <- £itSSM(y_LLT, inits = log(rep(var(y_ts)/100,4)), method = "Nelder-Mead")

construct 90/ confidence intervals for smoothed state
y_KS_1vl <- predict(y_LLT_ML$model, states = "level",

level = 0.9, interval = "confidence", filtered = FALSE)
y_KS_sea <- predict(y_LLT_ML$model, states = "seasonal",

level = 0.9, interval = "confidence", filtered = FALSE)

29/39

Application: Quarterly earnings per share of Johnson & Johnson

par(mfrow = c(2,1), mar = c(3,3,2,1), cex = 0.9)
cbind(y_ts, y_KS_1lvl) %>%

plot.ts(plot.type = "single", col = c¢(1,2,2,2), 1ty = ¢(1,1,3,3), 1lwd = 2, xlab = "", ylab = "",
main = "Johnson and Johnson: log transformed earnings per share, actual vs smoothed")
y_KS_sea 7>/
plot.ts(plot.type = "single", col = 2, 1ty = ¢(1,3,3), lwd = 2, xlab = "", ylab = "",
main = "seasonal component")

abline(h = 0, 1ty = 3)

Johnson and Johnson: log transformed earnings per share, actual vs smoothed

1960 1965 1970 1975 1980

seasonal component

0.3

0.1

-0.1
L

\

-0.3
L

30/39

Application: Quarterly earnings per share of Johnson & Johnson

par (mfrow=c(2,1), mar=c(3,3,2,1), cex=0.9)
cbind(y_ts, y_KS_1vl) %>% exp() %>%

plot.ts(plot.type = "single", col = c¢(1,2,2,2), 1ty = ¢(1,1,3,3), 1lwd = 2, xlab = "", ylab = "",
main = "Johnson and Johnson: earnings per share, actual vs smoothed")
y_KS_sea %>% exp() %>%
plot.ts(plot.type = "single", col = 2, 1ty = ¢(1,3,3), lwd = 2, xlab = "", ylab = "",
main = "seasonal component")

abline(h = 1, 1ty = 3)

Johnson and Johnson: earnings per share, actual vs smoothed

15
1

T T T T T
1960 1965 1970 1975 1980

seasonal component

13
L

11
L

0.9

:v'vvvavv\

0.7
L

31/39

Missing Values

Kalman Filtering and Smoothing can easily deal with missing data
case 1:

» observations for all variables in y are missing for some periods
» thus no new information available at these time points; Kalman filtering

and smoothing procedures remains same but with
Vi = 0 Kt = 0

for periods with missing values

case 2:

» some components of y are missing for some periods

> let y; = Jy, be the vector of observed data, where J; are the rows of kx k
identity matrix corresponding to observed variables

» Kalman filtering and smoothing procedure remain same, but observation
equation for periods with missing data is replaced with

yi = ci+Ziscte;
where ¢f = Jei, ZF = JZ,, €f = Jer and Hf = JH.J'

32/39

Application: Local Level Model for Nile Data with Missing Values

annual flow of the river Nile at Ashwan 1871-1970
y_ts <- datasets::Nile

create missing values
y_ts[21:50] <- NA
y_ts[71:80] <- NA

define the state-space local level model
y_LLM <- SSModel(y_ts ~ SSMtrend(1, Q = list(NA)), H = NA)

mazimum likelihood estimation of paramaters of § and H
initvals <- rep(var(y_ts, na.rm = TRUE), 2)/10000
y_LLM_ML <- fitSSM(model = y_LLM, inits = initvals, method = "BFGS")

Kalman filtering and smoothing
y_KFS <- KFS(y_LLM_ML$model)

confidence intervals for filtered and smoothed state
y_KF <- predict (y_LLM_ML$model, interval = "confidence", level = 0.9, filtered = TRUE)
y_KS <- predict(y_LLM_ML$model, interval = "confidence", level = 0.9)

replace filtered state for first period by NA
y_KF[1,] <- NA

33/39

Application: Local Level Model for Nile Data with Missing Values

par(mfrow = c(1,2), mar = c(3,3,2,1), cex = 0.8)
cbind(y_ts, y_KF, Nile) %>%

plot.ts(plot.type = "single", col = c(1,4,4,4,1), 1lwd = c(2,2,2,2,1), 1ty = c(1,1,2,2,3),

xlab = "", ylab = "", main = "")
abline(v = 1898)
legend("topright", legend = c("data","filtered state","90% confidence interval"),
col = c(1,4,4), 1ty = c(1,1,2), lwd = c(1,1,1), bty = "n", cex = 0.9)

c(y_KFS$P) [-1] %>% ts(start=1872) %>%

plot(, col = "blue", lwd = 2, xlab = "", ylab = "", main = "variance of state")

variance of state

g
g —
— — data
— filtered state
--- 90% confidence interval
g
81 g
g
a
3
g |
g
g
g
g
g
g
. g
g
g
g s
© 8 -
g
T T T T T T T T T T
1880 1900 1920 1940 1960 1880 1900 1920 1940 1960

34/39

Application: Local Level Model for Nile Data with Missing Values

» local level model implies that the filtered state y;.—; remains constant
during the period where no additional information is obtained due to
missing values

» the variance of the filtered state is increasing and confidence intervals are
getting larger during the period with missing observations

» the error can thus be quite large if a structural break occurs during the
period with missing data, due to an event like here the construction of dam
in 1898

35/39

Forecasting with State Space Models

> essentially identical to having missing observations at the end of the sample

» usual Kalman filter recursion is thus performed, but on an extended sample
with missing observations added at the end of the sample (number of
missing observations added is the same as the desired forecast horizon)

36/39

Application: Local Level Model for Nile Data
forecast horizon
h <- 8
create forecast
y_f <- predict(y_LLT_ML$model, interval = "confidence", level = 0.9, n.ahead = h, filtered = TRUE)

plot the forecast
cols <- c(1,4,4,4)
ltys <- ¢(1,1,2,2)
cbind(y_ts, y_f) %>%
plot(plot.type = "single", col = cols, lwd = 2, 1ty = ltys, xlab = "", ylab = "", main = "")
legend("topright", c("data","forecast","90% confidence interval"), col = cols, lty = ltys, bty = "n"

o
o _
<
- — data
—— forecast
S ---- 90% confidence interval
Q
S
o
8 .
— P -
.
o
o - —
2
N
~
o ~
S - ~
)

1880 1900 1920 1940 1960 1980

37/39

Application: Quarterly earnings per share of Johnson & Johnson

forecast horizon

h <- 16

create forecast

y_f <- predict(y_LLT_ML$model, interval = "confidence", level = 0.9, n.ahead = h)

par(mfcol=c(3,1), cex=0.9, mar=c(3,2,2,2))
cols <- c(1,4,4,4)
lwds <- c(2,2,1,1)
1ltys <- c(1,1,2,2)

log
cbind(y_ts, y_f) %>%
plot.ts(plot.type = "single", col = cols, lwd = lwds, lty = ltys, xlab = "", ylab = "",

main = "Johnson and Johnson: log transformed earnings per share")
legend("topleft", legend = c("actual data","forecast","90% confidence interval"),
col = cols, lwd = lwds, lty = ltys, bty = "n", cex = 0.8)

log-change
cbind(y_ts, y_£) %>% diff() %>%
plot.ts(plot.type = "single", col = cols, lwd = lwds, lty = ltys, xlab = "", ylab = "",
main="Johnson and Johnson: change in log transformed earnings per share")
legend("topleft", legend = c("actual data","forecast","90% confidence interval"),
col = cols, lwd = lwds, lty = ltys, bty = "n", cex = 0.8)

levels
cbind(y_ts, y_£) %> exp(O) %>%
plot.ts(plot.type = "single", col = cols, lwd = lwds, lty = ltys, xlab = "", ylab = "",

main="Johnson and Johnson: earnings per share")
legend("topleft", legend = c("actual data","forecast","90% confidence interval"),
col = cols, lwd = lwds, 1ty = ltys, bty = "n", cex = 0.8)

38/39

Application: Quarterly earnings per share of Johnson & Johnson

Johnson and Johnson: log transformed earnings per share

—— actual data

™ - — forecast
--- 90% confidence interval

~ 4

- 4

o 4

-

1 T T T T T T
1960 1965 1970 1975 1980 1985

Johnson and Johnson: change in log transformed earnings per share
| — actual data

~ forqcast

84

o

S

T

o

2 |

! T T T T T T
1960 1965 1970 1975 1980 1985

Johnson and Johnson: earnings per share

g 4 — actual data

o —— forecast

& - --- 90% confidence interval

o

&

o |

£

o 4

1960 1965 1970 1975 1980 1985

39/39

