
Eco 5316 Time Series Econometrics
Lecture 24 State Space Models

1 / 39



Motivation

I time series models in economics and finance may often be represented in
state space form

I state space model consists of a measurement equation relating the observed
time series y t to an unobserved state vector st and a state transition
equation that describes the evolution of the state vector st over time

I state-space model provides a flexible approach to time series analysis,
simplifying maximum-likelihood estimation and handling of missing values

2 / 39



Local Level Model

I consider time series yt satisfying

yt = µt +εt εt ∼ N(0, σ2
ε)

µt+1 = µt +ζt ζt ∼ N(0, σ2
ζ)

where E(εtζt) = 0 and µ1 is either known or drawn from known distribution
I here µt is an unobserved random walk, only yt is observable, with noise εt

I the simple model above could be used to model either log of an asset price,
log of its volatility, detrended log of national income, detrended log of labor
productivity . . .

I this model is an example of a linear Gaussian state space model

3 / 39



Local Level Model

note that in the local level model

I since yt =
∑t

j=1 ζj +εt innovations ζt have a permanent effect on yt , but
innovations εt have only a temporary effect on yt

I if σ2
ε = 0 then yt follows a pure random walk

I if σ2
ζ = 0 then yt fluctuates around constant mean µ1

4 / 39



Local Level Model

σζ
2 = 0.04 and σε

2 = 1

σζ
2 = 1 and σε

2 = 1

σζ
2 = 1 and σε

2 = 0.04

0 25 50 75 100

0 25 50 75 100

0 25 50 75 100

−4

−2

0

2

4

−4

−2

0

2

4

−4

−2

0

2

4

µt

yt

5 / 39



Local Level Model

I note that the Local Level Model implies that

yt+1 = yt +εt+1−εt +ζt

and so
Var(∆yt) = 2σ2

ε+σ2
ζ

cov(∆yt ,∆yt−1) = −σ2
ε

cov(∆yt ,∆yt−j ) = 0 for j > 1
I the above implies that yt follows an ARIMA(0,1,1) model

yt = yt−1 +at +θ1at−1

since
Var(∆yt) = (1+θ2

1)σ2
a

cov(∆yt ,∆yt−1) = θ1σ
2
a

cov(∆yt ,∆yt−j ) = 0 for j > 1

and by setting θ1 to the solution of 1+θ2
1−θ1(2+σ2

ζ/σ
2
ε) = 0 we obtain

exactly the above variance and covariances

6 / 39



Preview: Filtering, Prediction, Smoothing

I suppose that we have information Ft = {y1, , . . . , yt}
I if parameters σε, σζ of the Local Level Model are known, the statistical

inference we are interested in entails the following:
I filtering: recovering µt and removing measurement error εt

I prediction: forecasting µt+h and yt+h for h > 0
I smoothing: recovering µj for j < t

7 / 39



Preview: Filtering, Prediction, Smoothing

notation

I µt|j = E(µt |Fj ) is the conditional mean of µt given Fj

I Σt|j = Var(µt |Fj ) is the conditional variance of µt given Fj

I yt|j = E(yt |Fj ) is the conditional mean of yt given Fj

I vt = yt−yt|t−1 is the one step ahead forecast error
I Vt = Var(vt |Ft−1) is the variance of the one step ahead forecast error

8 / 39



Local Level Model

for the Local Level Model we have

I one step ahead forecast

yt|t−1 = E(yt |Ft−1) = E(µt +εt |Ft−1) = µt|t−1

I one step ahead forecast error

vt = yt−yt|t−1 = yt−µt|t−1

I variance of the one step ahead forecast error

Vt = Var(vt |Ft−1) = Var(yt−yt|t−1|Ft−1) = Var(yt−µt|t−1|Ft−1)
= Var(µt +εt−µt|t−1|Ft−1) = Var(µt−µt|t−1|Ft−1)+Var(εt |Ft−1)
= Σt|t−1 +σ2

ε

9 / 39



Kalman Filter for Local Level Model

I goal of Kalman filter is to obtain one step ahead predictions by updating the
current estimate of state variable when new data point becomes available

I since innovations εt and ζt are Gaussian the joint distribution of (µt , vt)′
given Ft−1 is also Gaussian[

µt
vt

]
Ft−1

∼ N
([
µt|t−1

0

]
,

[
Σt|t−1 Σt|t−1
Σt|t−1 Vt

])
I conditional distribution of µt given Ft is thus N(µt|t ,Σt|t) where

µt|t = µt|t−1 +Ktvt

Σt|t = Σt|t−1(1−Kt)

with Kt = Σt|t−1/Vt

I finally, given µt|t and Σt|t the conditional mean and variance for period
t +1 state are

µt+1|t = E(µt +ζt |Ft) = E(µt |Ft) = µt|t

Σt+1|t = Var(µt+1|Ft) = Var(µt |Ft)+Var(ζt) = Σt|t +σ2
ζ

10 / 39



Kalman Filter for Local Level Model
summary of Kalman Filter procedure for local level model:

I parameters σ2
ε and σ2

ζ are given
I initial state µ1 is assumed to be distributed as N(µ1|0,Σ1|0)
I suppose that in period t given previous information Ft−1 we have

conditional mean µt|t−1 and conditional variance Σt|t−1

I after observing yt we have Ft and obtain conditional mean µt+1|t and
conditional variance Σt+1|t using

vt = yt−µt|t−1

Vt = Σt|t−1 +σ2
ε

Kt = Σt|t−1/Vt

µt+1|t = µt|t−1 +Ktvt

Σt+1|t = Σt|t−1(1−Kt)+σ2
ζ

Kt is called Kalman gain; note that Kt = Σt|t−1
Σt|t−1+σ2

ε
, thus if the variance of

temporary disturbance εt is large then Kt is small and even a large forecasting
error leads to only a small update from µt|t−1 to µt|t

11 / 39



Kalman Filter for Local Level Model - Nile Data
see https://cran.r-project.org/web/packages/KFAS/vignettes/KFAS.pdf for
details and examples how to define, estimate and simulate state-space models
using KFAS package
library(magrittr)
library(KFAS)

y_ts <- datasets::Nile

# specify the state-space local level model
y_LLM <- SSModel(y_ts ~ SSMtrend(degree = 1, Q = list(NA)) , H = NA)
# maximum likelihood estimation of paramaters of Q and H (i.e. variances of the two inovations)
y_LLM_ML <- fitSSM(inits = log(rep(var(y_ts)/1000, 2)) , model = y_LLM, method = "BFGS")
# run Kalman Filter and Smoother with estimated parameters
y_LLM_KFS <- KFS(y_LLM_ML$model)

# construct 90% confidence interval for filtered state
y_KF <- predict(y_LLM_ML$model, interval = "confidence", level = 0.9, filtered = TRUE)
y_KF[1,] <- NA

par(mfrow = c(2,2), cex = 0.8)
cbind(y_ts, y_KF) %>%

plot.ts(plot.type = "single", col = c(1,4,4,4), lwd = c(1,2,1,1), lty = c(1,1,2,2))
legend("topright", legend = c("data","filtered state","90% confidence interval"),

col = c(1,4,4), lty = c(1,1,2,2), lwd = c(1,2,1,1), bty = "n", cex=0.9 )
c(y_LLM_KFS$v[-1]) %>% ts(start = 1871) %>%

plot(main = expression(paste("forecast error ", v["t"])))
abline(h=0,col="grey")
c(y_LLM_KFS$P)[-1] %>% ts(start = 1871) %>%

plot(main = expression(paste("variance of state ", Sigma["t|t-1"])))
c(y_LLM_KFS$F)[-1] %>% ts(start = 1871) %>%

plot(main = expression(paste("variance of forecast error ", V["t"])))

12 / 39



Kalman Filter for Local Level Model - Nile Data

1880 1900 1920 1940 1960

60
0

80
0

10
00

12
00

14
00

data yt

filtered state µt|t−1

90% confidence interval µt|t−1 ± 1.64 Σt|t−1

forecast error vt

1880 1900 1920 1940 1960

−
40

0
−

20
0

0
20

0

variance of state Σt|t−1

1880 1900 1920 1940 1960

60
00

10
00

0
14

00
0

variance of forecast error Vt

1880 1900 1920 1940 1960

22
00

0
26

00
0

30
00

0

13 / 39



Kalman Smoothing for Local Level Model

I smoothing is essentially a backward estimation of {µ1, . . . , µT} given the
information set FT = {y1, . . . , yT}

I the objective is thus to obtain conditional distributions N(µt|T ,Σt|T ) for
t = T−1,T−2, . . . , 1 the procedure is going backward

I µt|T is called smoothed state and Σt|T smoothed state variance
I applying the properties of the conditional normal distribution one can derive

the following backward recursive algorithm to compute smoothed state
variables: using initial value qT = 0 and MT = 0 calculate for t = T , . . . , 1

qt−1 = V−1
t vt +(1−Kt)qt

µt|T = µt|t−1 +Σt|t−1qt−1

Mt−1 = V−1
t +(1−Kt)2Mt

Σt|T = Σt|t−1 +Σ2
t|t−1Mt−1

14 / 39



Kalman Filtering and Smoothing for Local Level Model - Nile Data

# construct 90% confidence intervals for smoothed state
y_KS <- predict(y_LLM_ML$model, interval = "confidence", level = 0.9)

par(mfrow = c(1,1), cex = 0.8)
cbind(y_ts, y_KF, y_KS) %>%

plot.ts(plot.type = "single", col = c("black","blue","blue","blue","red","red","red"),
lwd = c(1,2,1,1,2,1,1), lty = c(1,1,2,2,1,2,2), xlab = "", ylab = "", main = "")

legend("topright", legend = c( expression(paste("data ", y["t"])),
expression(paste("filtered state ", mu["t|t-1"])),
expression(paste("smoothed state ", mu["t|T"])) ),

col = c("black","blue","red"), lty = 1, lwd = 2, bty = "n")

15 / 39



Kalman Filtering and Smoothing for Local Level Model - Nile Data
note that

I smoothed state variable µt|T is smoother then filtered state variable µt|t−1

I confidence intervals for the smoothed state variables are also narrower than
those of the filtered state variables

1880 1900 1920 1940 1960

60
0

80
0

10
00

12
00

14
00

data yt
filtered state µt|t−1
smoothed state µt|T

16 / 39



Local Linear Trend Model

I consider time series yt satisfying

yt = µt +εt εt ∼ N(0, σ2
ε)

µt+1 = βt +µt +ζt ζt ∼ N(0, σ2
ζ)

βt+1 = βt +ηt ηt ∼ N(0, σ2
η)

where εt , ζt , ηt are independent at all lags and leads, and µ1, β1 are either
known or from known distribution

I if σ2
η = 0, σ2

ζ > 0 then yt is random walk with drift β1

I if σ2
η = 0, σ2

ζ = 0 then yt fluctuates around a linear trend with slope β1 and
intercept µ1

I if σ2
η > 0, σ2

ζ = 0 then yt fluctuates around a non-linear trend

17 / 39



Local Linear Trend Model

ση
2=0 and σζ

2=1

0 20 40 60 80 100

0
5

10
15

µt
yt

ση
2=0 and σζ

2=0

0 20 40 60 80 100

1
2

3
4

5
6

7 µt
yt

ση
2=0.01 and σζ

2=0

0 20 40 60 80 100

0
5

10
15 µt

yt

18 / 39



Linear Gaussian State Space Model
I local level and local linear trend models are particular cases of linear

Gaussian state space model
I linear Gaussian state space model implemented in KFAS package

y t = Z tst +εt εt ∼ N(0,Ht)
st+1 = T tst +R tηt ηt ∼ N(0,Qt)

where
y t is an k×1 vector of observations
st is an m×1 state vector
T t is an m×m matrix
R t is an m×n matrix
Z t is an k×m matrix
ηt is an n×1 vector
εt is an k×1 vector

with initial state s1 ∼ N(µ1|0,Σ1|0) and E(εtη
′
t) = 0 so innovations in

state transition equation and measurement equation are independent
I system matrices T t ,R t ,Z t ,Qt and Ht can be functions of some

parameters θ that are estimated
I in many cases system matrices are actually time invariant

19 / 39



Linear Gaussian State Space Model

I Kalman Filter algorithm, given initial values µ1|0 and Σ1|0

v t = y t−Z tst|t−1

V t = Z tΣt|t−1Z ′t +Ht

K t = T tΣt|t−1Z ′tV−1
t

st+1|t = T tst|t−1 +K tv t

Σt+1|t = T tΣt|t−1(T t−K tZ t)′+R tQtR ′t

I this can be collapsed into two equations

st+1|t = T tst|t−1 +T tΣt|t−1Z ′t
(
Z tΣt|t−1Z ′t +Ht

)−1(y t−Z tst|t−1
)

Σt+1|t = T tΣt|t−1T ′t−T tΣt|t−1Z ′t
(
Z tΣt|t−1Z ′t +H ′t

)−1Z tΣt|t−1T ′t +R tQtR ′t

20 / 39



Linear Gaussian State Space Model

notation

Tsay KFAS
state st αt
conditional mean for state st|t−1 at
smoothed state st|T α̂t
conditional variance of state Σt|t−1 Pt
variance of smoothed state Σt|T V t
variance of forecast error V t F t

sample size T n
measurements y t is k×1 vector y t is p×1 vector
state st is m×1 vector αt is m×1 vector
transition equation innovation ηt is n×1 vector ηt is k×1 vector

21 / 39



Application: CAPM with Time-Varying Coefficients

I state-space model framework allows to easily estimate models with time
varying parameters

I consider for example a capital asset pricing model with with time-varying
intercept and slope

rt = αt +βtrM,t +εt εt ∼ N(0, σ2
ε)

αt+1 = αt +ζt ζt ∼ N(0, σ2
ζ)

βt+1 = βt +ηt ηt ∼ N(0, σ2
η)

where rt is excess return of an asset, and rM,t is excess return of the market
I to obtain state-space representation rewrite above model in matrix form

rt =
[
1 rM,t

] [αt
βt

]
+εt εt ∼ N(0, σ2

ε)[
αt+1
βt+1

]
=
[
1 0
0 1

][
αt
βt

]
+
[
1 0
0 1

][
ζt
ηt

] [
ζt
ηt

]
∼ N

([
0
0

]
,

[
σ2
ζ 0
0 σ2

η

])
and let y t = rt , st = (αt , βt)′, T t = R t = I2, Z t = [1, rM,t ], Ht = σ2

ε,
Qt = diag{σ2

ζ , σ
2
η}

22 / 39



Application: CAPM with Time-Varying Coefficients

# load data on excess returns from January 1990 to December 2003
# http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/m-excess-c10sp-9003.txt
er_ts <- read.table("m-excess-c10sp-9003.txt", header = TRUE) %>% ts(start = c(1990, 1), frequency = 12)
# extract excess returns for General Motors and for S&P 500
gm <- er_ts[, "GM"]
sp500 <- er_ts[, "SP5"]

# get number of observatons
tobs <- length(sp500)
# construct system matrices for state-space model - a CAPM with time variable alpha and betta
Zt <- array(rbind(rep(1, tobs), sp500), dim = c(1, 2, tobs))
Ht <- matrix(NA)
Tt <- diag(2)
Rt <- diag(2)
Qt <- matrix(c(NA, 0, 0, NA), 2, 2)
# use diffuse prior for initial state
P1inf <- diag(2)

# define state-space CAPM model
y_SS <- SSModel(gm ~ -1 + SSMcustom(Z = Zt, T = Tt, R = Rt, Q = Qt, P1inf = P1inf), H = Ht)
# estimate variances of innovations using maximum likelihood
y_SS_ML <- fitSSM(y_SS, inits = c(0.001,0.001,0.001), method = "BFGS")

# Kalman filtering and smoothing, with parameters in Q and H set to maximum likelihood estimates
y_SS_KFS <- KFS(y_SS_ML$model)

# extract filtered and smoothed alpha and betta
alpha.KFS <- cbind(y_SS_KFS$a[, 1], y_SS_KFS$alphahat[, 1])
betta.KFS <- cbind(y_SS_KFS$a[, 2], y_SS_KFS$alphahat[, 2])

23 / 39



Application: CAPM with Time-Varying Coefficients
par(mfcol=c(2,2), mar=c(2,4,2,1))
# plot filtered and smoothed state alpha and betta
plot.ts(alpha.KFS, plot.type="single", xlab="",ylab="alpha", col=c("blue","red"), lwd=2)
legend("topright", c("filtered","smoothed"), col=c("blue","red"), lwd=2, cex=0.7, bty="n")
plot.ts(betta.KFS, plot.type="single", xlab="",ylab="betta", col=c("blue","red"), lwd=2)
legend("topright", c("filtered","smoothed"), col=c("blue","red"), lwd=2, cex=0.7, bty="n")
# plot smoothed state alpha and betta
plot.ts(alpha.KFS[,2], plot.type="single", xlab="",ylab="alpha", col="red", lwd=2)
plot.ts(betta.KFS[,2], plot.type="single", xlab="",ylab="betta", col="red", lwd=2)

al
ph

a

1990 1992 1994 1996 1998 2000 2002 2004

−
0.

02
0.

02
0.

06

filtered
smoothed

be
tta

1990 1992 1994 1996 1998 2000 2002 2004

0.
0

0.
4

0.
8

1.
2

filtered
smoothed

al
ph

a

1990 1992 1994 1996 1998 2000 2002 2004

0.
00

20
70

0.
00

20
80

be
tta

1990 1992 1994 1996 1998 2000 2002 2004

1.
01

1.
03

1.
05

1.
07

24 / 39



Application: CAPM with Time-Varying Coefficients

I note that smoothed states αt|T and βt|T are much smoother than filtered
state αt|t−1 and βt|t−1, since Kalman smoothing uses information from the
whole sample, but Kalman filtering only information up to period t

25 / 39



Unobserved Components Model

I goal: decomposition of time series into trend, seasonal and irregular
component

yt = µt +γt +εt

where
yt is the observed data
µt is an slowly changing component (trend)
γt is periodic seasonal component
εt is irregular disturbance component

and µt , γt , εt are modeled explicitly as stochastic processes
I note that local level model and local linear trend model are special cases of

the unobserved components model with no seasonal component γt

I seasonal component can be modeled using time varying dummy variables as

(1+B+. . .+Bs−1)γt+1 = ωt ωt ∼ N(0, σ2
ω)

so that in expectation the sum of the seasonal effects captured by dummy
variables γt , γt−1, . . . , γt−s+1 is zero

26 / 39



Application: Quarterly earnings per share of Johnson & Johnson

I local linear trend model with seasonal component

yt = µt +γt +εt εt ∼ N(0, σ2
ε)

µt+1 = βt +µt +ζt ζt ∼ N(0, σ2
ζ)

βt+1 = βt +ηt ηt ∼ N(0, σ2
η)

(1+B+B2 +B3)γt+1 = ωt ωt ∼ N(0, σ2
ω)

I seasonal dummy approach: γt+1 = −
∑2

j=0 γt−j +ωt

27 / 39



Application: Quarterly earnings per share of Johnson & Johnson

I to obtain state-space representation rewrite the above model in matrix form

yt

︸︷︷︸
y t

=
[
1 0 1 0 0

]
︸ ︷︷ ︸

Z t


µt
βt
γt
γt−1
γt−2


︸ ︷︷ ︸

s t

+ εt

︸︷︷︸
εt

µt+1
βt+1
γt+1
γt
γt−1


︸ ︷︷ ︸

s t+1

=


1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0


︸ ︷︷ ︸

T t


µt
βt
γt
γt−1
γt−2


︸ ︷︷ ︸

s t

+


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


︸ ︷︷ ︸

R t

[
ζt
ηt
ωt

]
︸ ︷︷ ︸
ηt

where
εt ∼ N(0, σ2

ε︸︷︷︸
H t

)

[
ζt
ηt
ωt

]
∼ N

([
0
0
0

]
,

[
σ2
ζ 0 0

0 σ2
η 0

0 0 σ2
ω

]
︸ ︷︷ ︸

Qt

)

28 / 39



Application: Quarterly earnings per share of Johnson & Johnson

# import quarterly data on earnings per share for Johnson and Johnson available at
# http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/q-jnj.txt
y_ts <- scan(file = "http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/q-jnj.txt") %>%

ts(start = c(1960, 1), frequency = 4) %>% log()

# define a local level model with seasonal component
y_LLT <- SSModel(y_ts ~ SSMtrend(degree = 2,Q = rep(list(NA), 2))

+ SSMseasonal(period = 4,sea.type = "dummy", Q = NA), H = NA)

# estimate model parameters using maximum likelihood
y_LLT_ML <- fitSSM(y_LLT, inits = log( rep(var(y_ts)/100,4) ), method = "Nelder-Mead")

# construct 90% confidence intervals for smoothed state
y_KS_lvl <- predict(y_LLT_ML$model, states = "level",

level = 0.9, interval = "confidence", filtered = FALSE)
y_KS_sea <- predict(y_LLT_ML$model, states = "seasonal",

level = 0.9, interval = "confidence", filtered = FALSE)

29 / 39



Application: Quarterly earnings per share of Johnson & Johnson
par(mfrow = c(2,1), mar = c(3,3,2,1), cex = 0.9)
cbind(y_ts, y_KS_lvl) %>%

plot.ts(plot.type = "single", col = c(1,2,2,2), lty = c(1,1,3,3), lwd = 2, xlab = "", ylab = "",
main = "Johnson and Johnson: log transformed earnings per share, actual vs smoothed" )

y_KS_sea %>%
plot.ts(plot.type = "single", col = 2, lty = c(1,3,3), lwd = 2, xlab = "", ylab = "",

main = "seasonal component" )
abline(h = 0, lty = 3)

Johnson and Johnson: log transformed earnings per share, actual vs smoothed

1960 1965 1970 1975 1980

0
1

2

seasonal component

1960 1965 1970 1975 1980

−
0.

3
−

0.
1

0.
1

0.
3

30 / 39



Application: Quarterly earnings per share of Johnson & Johnson
par(mfrow=c(2,1), mar=c(3,3,2,1), cex=0.9)
cbind(y_ts, y_KS_lvl) %>% exp() %>%

plot.ts(plot.type = "single", col = c(1,2,2,2), lty = c(1,1,3,3), lwd = 2, xlab = "", ylab = "",
main = "Johnson and Johnson: earnings per share, actual vs smoothed")

y_KS_sea %>% exp() %>%
plot.ts(plot.type = "single", col = 2, lty = c(1,3,3), lwd = 2, xlab = "", ylab = "",

main = "seasonal component")
abline(h = 1, lty = 3)

Johnson and Johnson: earnings per share, actual vs smoothed

1960 1965 1970 1975 1980

0
5

10
15

seasonal component

1960 1965 1970 1975 1980

0.
7

0.
9

1.
1

1.
3

31 / 39



Missing Values
Kalman Filtering and Smoothing can easily deal with missing data

case 1:

I observations for all variables in y are missing for some periods
I thus no new information available at these time points; Kalman filtering

and smoothing procedures remains same but with

v t = 0 K t = 0
for periods with missing values

case 2:

I some components of y are missing for some periods
I let y∗t = Jy t be the vector of observed data, where Jt are the rows of k×k

identity matrix corresponding to observed variables
I Kalman filtering and smoothing procedure remain same, but observation

equation for periods with missing data is replaced with

y∗t = c∗t +Z∗t st +ε∗t
where c∗t = Jc t , Z∗t = JZ t , ε∗t = Jεt and H∗t = JHtJ ′

32 / 39



Application: Local Level Model for Nile Data with Missing Values

# annual flow of the river Nile at Ashwan 1871-1970
y_ts <- datasets::Nile

# create missing values
y_ts[21:50] <- NA
y_ts[71:80] <- NA

# define the state-space local level model
y_LLM <- SSModel(y_ts ~ SSMtrend(1, Q = list(NA)), H = NA)

# maximum likelihood estimation of paramaters of Q and H
initvals <- rep(var(y_ts, na.rm = TRUE), 2)/10000
y_LLM_ML <- fitSSM(model = y_LLM, inits = initvals, method = "BFGS")

# Kalman filtering and smoothing
y_KFS <- KFS(y_LLM_ML$model)

# confidence intervals for filtered and smoothed state
y_KF <- predict(y_LLM_ML$model, interval = "confidence", level = 0.9, filtered = TRUE)
y_KS <- predict(y_LLM_ML$model, interval = "confidence", level = 0.9)

# replace filtered state for first period by NA
y_KF[1,] <- NA

33 / 39



Application: Local Level Model for Nile Data with Missing Values
par(mfrow = c(1,2), mar = c(3,3,2,1), cex = 0.8)
cbind(y_ts, y_KF, Nile) %>%

plot.ts(plot.type = "single", col = c(1,4,4,4,1), lwd = c(2,2,2,2,1), lty = c(1,1,2,2,3),
xlab = "", ylab = "", main = "")

abline(v = 1898)
legend("topright", legend = c("data","filtered state","90% confidence interval"),

col = c(1,4,4), lty = c(1,1,2), lwd = c(1,1,1), bty = "n", cex = 0.9)
c(y_KFS$P)[-1] %>% ts(start=1872) %>%

plot( , col = "blue", lwd = 2, xlab = "", ylab = "", main = "variance of state")

1880 1900 1920 1940 1960

60
0

80
0

10
00

12
00

14
00

data
filtered state
90% confidence interval

variance of state

1880 1900 1920 1940 1960

50
00

10
00

0
15

00
0

34 / 39



Application: Local Level Model for Nile Data with Missing Values

I local level model implies that the filtered state yt|t−1 remains constant
during the period where no additional information is obtained due to
missing values

I the variance of the filtered state is increasing and confidence intervals are
getting larger during the period with missing observations

I the error can thus be quite large if a structural break occurs during the
period with missing data, due to an event like here the construction of dam
in 1898

35 / 39



Forecasting with State Space Models

I essentially identical to having missing observations at the end of the sample
I usual Kalman filter recursion is thus performed, but on an extended sample

with missing observations added at the end of the sample (number of
missing observations added is the same as the desired forecast horizon)

36 / 39



Application: Local Level Model for Nile Data
# forecast horizon
h <- 8
# create forecast
y_f <- predict(y_LLT_ML$model, interval = "confidence", level = 0.9, n.ahead = h, filtered = TRUE)

# plot the forecast
cols <- c(1,4,4,4)
ltys <- c(1,1,2,2)
cbind(y_ts, y_f) %>%

plot(plot.type = "single", col = cols, lwd = 2, lty = ltys, xlab = "", ylab = "", main = "")
legend("topright", c("data","forecast","90% confidence interval"), col = cols, lty = ltys, bty = "n")

1880 1900 1920 1940 1960 1980

60
0

80
0

10
00

12
00

14
00

data
forecast
90% confidence interval

1880 1900 1920 1940 1960 1980

60
0

80
0

10
00

12
00

14
00

data
forecast
90% confidence interval

37 / 39



Application: Quarterly earnings per share of Johnson & Johnson
# forecast horizon
h <- 16
# create forecast
y_f <- predict(y_LLT_ML$model, interval = "confidence", level = 0.9, n.ahead = h)

par(mfcol=c(3,1), cex=0.9, mar=c(3,2,2,2))
cols <- c(1,4,4,4)
lwds <- c(2,2,1,1)
ltys <- c(1,1,2,2)

# log
cbind(y_ts, y_f) %>%

plot.ts(plot.type = "single", col = cols, lwd = lwds, lty = ltys, xlab = "", ylab = "",
main = "Johnson and Johnson: log transformed earnings per share")

legend("topleft", legend = c("actual data","forecast","90% confidence interval"),
col = cols, lwd = lwds, lty = ltys, bty = "n", cex = 0.8)

# log-change
cbind(y_ts, y_f) %>% diff() %>%

plot.ts(plot.type = "single", col = cols, lwd = lwds, lty = ltys, xlab = "", ylab = "",
main="Johnson and Johnson: change in log transformed earnings per share")

legend("topleft", legend = c("actual data","forecast","90% confidence interval"),
col = cols, lwd = lwds, lty = ltys, bty = "n", cex = 0.8)

# levels
cbind(y_ts, y_f) %>% exp() %>%

plot.ts(plot.type = "single", col = cols, lwd = lwds, lty = ltys, xlab = "", ylab = "",
main="Johnson and Johnson: earnings per share")

legend("topleft", legend = c("actual data","forecast","90% confidence interval"),
col = cols, lwd = lwds, lty = ltys, bty = "n", cex = 0.8)

38 / 39



Application: Quarterly earnings per share of Johnson & Johnson

Johnson and Johnson: log transformed earnings per share

1960 1965 1970 1975 1980 1985

−
1

0
1

2
3

actual data
forecast
90% confidence interval

Johnson and Johnson: change in log transformed earnings per share

1960 1965 1970 1975 1980 1985

−
0.

6
−

0.
2

0.
2

actual data
forecast
90% confidence interval

Johnson and Johnson: earnings per share

1960 1965 1970 1975 1980 1985

0
10

20
30

40 actual data
forecast
90% confidence interval

39 / 39


