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Motivation

I in a VAR model all variables need to be weakly stationary, and we can
estimate it equation by equation using standard OLS

I we will need different methodology for nonstationary time series, since
spurious regression problem can arise with standard OLS when the times
series are nonstationary
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Spurious Regression

I spurious regression problem - running and OLS with integrated variables
can yield significant coefficients, even though the variables are not related

I example: suppose that yi,t = yi,t−1+εi,t for i = 1, 2 and that we estimate a
simple OLS y2,t = β0+β1y1,t +et

I if T →∞ then β1 6→ 0, and in addition t-statistics → ±∞ and R2 → 1
I residuals from the OLS will show significant serial correlation

I bottom line: with nonstationary time series we have to be vary careful with
OLS regressions, correlation does not necessarily mean causality
http://tylervigen.com/spurious-correlations
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Example: Spurious Regression

y1,t = y1,t−1 + ε1,t
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Example: Spurious Regression

myOLS <- lm(y2 ~ y1)
summary(myOLS)

##
## Call:
## lm(formula = y2 ~ y1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.9681 -1.1017 0.5366 2.4119 7.6268
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.25535 0.82054 1.53 0.129
## y1 -0.95641 0.08371 -11.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.952 on 99 degrees of freedom
## Multiple R-squared: 0.5687, Adjusted R-squared: 0.5643
## F-statistic: 130.5 on 1 and 99 DF, p-value: < 2.2e-16
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Example: Spurious Regression
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Cointegration and Error Correction Models

I economic models often feature
(1) economic variables related to each other through a long-run equilibrium

relationship
(2) forces that push the variables toward this equilibrium if there is a temporary

deviation from it (for long-run equilibrium to exist, movements of some of
the variables must respond to the magnitude and direction of the deviation
from it)

I this motivates the concepts of cointegration and error correction
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Cointegration

some examples of relationships predicted by theory
I real wages and labor productivity w

p = (1−α) Y
H

I money demand: stock of money, price level, real GDP, nominal interest rate
M
p = L(Y , i)

I purchasing power parity: prices of the same good in two countries and the
exchange rate p∗t = etpt

I prices of same stock traded on two stock exchanges
I short run and long run interest rates
I permanent income and consumption expenditures Ct = γY p

t

testing for cointegration is then essentially investigating whether particular
theory is consistent with data
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Cointegration

I recall: a variable yt is I(d), integrated of order d , if it is nonstationary
and differencing it d times produces a stationary variable ∆dyt

I vector of variables y t = (y1t , . . . , ynt) is said to be cointegrated of order
d , b, denoted by CI(d , b) if
1. all components are integrated of order d
2. there exists a cointegrating vector β = (β1, . . . , βn)′ 6= 0 such that
β′y t = β1y1t +. . .+βnynt is integrated of order d−b

I cointegrating vector is not unique, λβ also satisfies the condition for any
λ > 0; we usually normalize β1 = 1

I number of cointegrating vectors is called the cointegrating rank of y t

I for n variables there can be up to n−1 linearly independent cointegrating
vectors

I in economics most nonstationary time series are I(1) and so C(1, 1) is the
most common case of cointegration
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Cointegration
I real wage and labor productivity example: if

w
p = (1−α) Y

H

then
log w

p = log(1−α)+log Y
H

I in the data this will not hold all the time so

log w
p = log(1−α)+log Y

H +et

but theory suggests that log w
p and log Y

H should be I(1) due to
technological progress and et should be I(0) weakly stationary

I theory thus suggests that if y t = (log wt
pt
, log Yt

Ht
)′ then

et = log w
p −log Y

H −log(1−α)

is I(0) so the cointegrating vector is β = (β1, β2) = (1,−1) and we should
include a constant when testing for cointegration
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Cointegration
I driving force behind cointegration - variables share a common stochastic

trend; e.g. real wages and labor productivity both grow because of
technological progress that affects both of them

I consider the case with two I(1) time series y t = (y1,t , y2,t)′ where

yi,t = δi +µi,t +xi,t for i = 1, 2

where µi,t =
∑t

j=0 εi,t are the stochastic trend components and xi,t are
some weakly stationary I(0) processes

I these two are cointegrated if there exists vector β = (β1, β2)′ such that

β1y1,t +β2y2,t
is I(0), i.e. weakly stationary

I we have
β1y1,t +β2y2,t
=
(
β1δ1+β2δ2

)
+
(
β1µ1,t +β2µ2,t

)
+
(
β1x1,t +β2x2,t

)
which is only stationary if β1µ1,t +β2µ2,t = 0 so that µ1,t = −β2/β1µ2,t

I thus to be C(1, 1) cointegrated, y1,t and y2,t must share the same
stochastic trend, and cointegrating vector β removes this stochastic trend
from the linear combination of y1,t and y2,t
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Cointegration Test - Engle-Granger Methodology

I main idea for Engle-Granger test for cointegration: test whether residuals
from an OLS contain a unit root, if they do, there’s no cointegration, just
spurious regression

I example: consider two variables y t = (y1,t , y2,t)′

I step 1: test whether variables y1,t and y2,t are I(1)
I step 2: estimate one of the models

y1,t = β2y2,t +et

y1,t = δ0+β2y2,t +et

y1,t = δ0+δ1t +β2y2,t +et

I step 3: test residuals et for the presence unit root
I if we can not reject H0 of unit root in residuals, we can not reject the H0 that y1,t

and y2,t are not cointegrated
I rejecting H0 of unit root in residuals means rejecting that y1,t and y2,t are not

cointegrated
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Cointegration Test - Engle-Granger Methodology

I Engle-Granger Methodology has several significant drawbacks
I usual critical values can not be applied when testing for a unit root in

residuals, because coefficients β2, . . . , βn are unknown and were estimated
I critical values depend on deterministic terms used and number of variables
I exchanging y1,t and y2,t in the OLS may lead to contradictory results
I no way to test for cointegrating rank
I no easy way to test various restrictions on coefficients β2, . . . , βn

I because of these drawbacks Johansen’s methodology is generally preferred
to Engle-Granger Methodology
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Cointegration Test - Johansen’s Methodology

preview of main steps involved in Johansen’s Methodology
I specify and estimate a VAR(p) model for y t (in levels, not in differences)
I determine number of cointegrating vectors using trace and max eigenvalue

tests
I estimate a vector error correction model by maximum likelihood
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Vector Error Correction Model

I in an error-correction model (ECM), short-term dynamics of variables in the
system is influenced by the size of the deviation from long-run equilibrium

I suppose that two I(1) variables y t = (y1,t , y2,t)′ are CI(1, 1) cointegrated
with cointegrating vector β = (1, β2)′ so that y1,t +β2y2,t is I(0)

I consider a VAR(1) model y t = A1y t−1+εt or

y1,t = a11y1,t−1+a12y2,t−1+ε1,t
y2,t = a21y1,t−1+a22y2,t−1+ε2,t
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Vector Error Correction Model

I subtract yi,t−1 from equation i to get ∆y t = Πy t−1+εt where
Π = −(I−A1) or equivalently

∆y1,t = −(1−a11)
(
y1,t−1−a12/(1−a11)y2,t−1

)
+ε1,t

∆y2,t = a21
(
y1,t−1−(1−a22)/a21y2,t−1

)
+ε2,t

I the LHS variables ∆y1,t and ∆y2,t are I(0), the RHS are I(0) only if
(1−a11) = 0, a21 = 0, or if β2 = −a12/(1−a11) = −(1−a22)/a21

I we have obtained a simple vector error correction (VEC) model

∆y1,t = α1(y1,t−1+β2y2,t−1)+ε1,t
∆y2,t = α2(y1,t−1+β2y2,t−1)+ε2,t

where α1 = −(1−a11), α2 = a21 and β2 = −a12/(1−a11) = −(1−a22)/a21
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Vector Error Correction Model

I consider the simple vector error correction model we obtained

∆y1,t = α1(y1,t−1+β2y2,t−1)+ε1,t
∆y2,t = α2(y1,t−1+β2y2,t−1)+ε2,t

I (y1,t−1+β2y2,t−1) is referred to as the error correction term
I adjustment parameters α1, α2 determine the speed of return to long run

equilibrium, the larger they are in absolute value, the less persistent
deviations from long-run equilibrium become

I for long run relationship to be stable α1 ≤ 0, α2 ≥ 0 needs to be satisfied,
and at least one of them can not be equal 0

I if for example y1,t−1+β2y2,t−1 > 0, then y1,t−1 is too high and y2,t−1 too
low compared to the long run equilibrium, and if α1 > 0 and α2 < 0 then
y1 would be growing and y2 would be declining, taking the system even
further away from the long run equilibrium
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Vector Error Correction Model

I consider two processes y1,t and y2,t , with cointegrating relation y1,t +β2y2,t
I suppose that at time t−1 the the system is out of equilibrium with

zt−1 = y1,t−1+β2y2,t−1 > 0
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Vector Error Correction Model

I consider two processes y1,t and y2,t , with cointegrating relation y1,t +β2y2,t
I suppose that at time t−1 the the system is out of equilibrium with

zt−1 = y1,t−1+β2y2,t−1 > 0
I cointegrating relation exercises a “gravitational pull”: in period t system

will partially self-correct the disequilibrium of period t−1, and over time
gradually move toward the equilibrium

I to reach (y1,t , y2,t) from (y1,t−1, y2,t−1), y1 has decreased and y2 has
increased, so ∆y1,t < 0 and ∆y2,t > 0

I note that in period t there is still a disequilibrium zt , but of smaller
magnitude, |zt | < |zt−1|

I if there are no other shocks in the following periods, the system will keep
correcting the disequilibrium error until it reaches the equilibrium path, and
once there, it will not move out
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Vector Error Correction Model

I it is possible for one of the adjustment parameters to be zero:
if α1 < 0, α2 = 0 then y2,t is a pure random walk and all the adjustment
occurs in y1,t ; in this case y2,t is said to be weakly exogenous
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Vector Error Correction Model
I if α1 < 0 and α2 = 0 adjustment only takes place in y1, while y2 remains

the unchanged
I e.g. if y2 is income and y1 consumption expenditures, this would mean that

consumption drops over time if it is unsustainably high, and income remains
same over time
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Vector Error Correction Model
I if α1 = 0 and α2 > 0 adjustment only takes place in y2, while y1 remains

the unchanged
I e.g. if y2 is production and y1 consumption, this would mean that if

consumption is too high, it will remain unchanged, but production will grow
over time
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Vector Error Correction Model

I consider the simple vector error correction model we obtained

∆y1,t = α1(y1,t−1+β2y2,t−1)+ε1,t
∆y2,t = α2(y1,t−1+β2y2,t−1)+ε2,t

I more compactly we can write

∆y t = Πy t−1+εt

where
Π =

(
α1 α1β2
α2 α2β2

)
so that Π = αβ′ with α = (α1, α2)′ and β = (1, β2)′
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Vector Error Correction Model
I consider now y t = (y1,t , . . . , yn,t)′ that are I(1) and follow VAR(p)

y t = A1y t−1+A2y t−2+. . .+Apy t−p +εt

I first add and subtract Apy t−p+1 to get

y t = A1y t−1+A2y t−2+. . .+Ap−2y t−p+2+(Ap−1+Ap)y t−p+1−Ap∆y t−p+1+εt

I next add and subtract (Ap−1+Ap)y t−p+2 to get

y t = A1y t−1+A2y t−2+. . .
+(Ap−2+Ap−1+Ap)y t−p+2−(Ap−1+Ap)∆y t−p+2−Ap∆y t−p+1+εt

I by adding and subtracting (Ap−i+1+. . .+Ap)y t−p+i for i = 1, . . . , p−1

y t = (A1+. . .+Ap)y t−1

−(A2+. . .+Ap)∆y t−1−. . .−(Ap−1+Ap)∆y t−p+2−Ap∆y t−p+1+εt

I finally subtract y t−1 to get

∆y t = −(I−A1−. . .−Ap)y t−1

−(A2+. . .+Ap)∆y t−1−. . .−(Ap−1+Ap)∆y t−p+2−Ap∆y t−p+1+εt

I more compactly: ∆y t = Πy t−1+Γ1∆y t−1+. . .+Γp−1∆y t−p+1+εt where
Π = −(I−A1−. . .−Ap) and Γi = −(Ai+1+. . .+Ap)
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Vector Error Correction Model

I if y t = (y1,t , . . . , yn,t)′ is a vector of I(1) variables its VEC representation is

∆y t = Πy t−1+Γ1∆y t−1+. . .+Γp−1∆y t−p+1+εt

where Π = αβ′ and in addition also Π = −(I−A1−. . .−Ap) and
Γi = −(Ai+1+. . .+Ap) for i = 1, . . . , p−1

I Granger representation theorem: for any set of I(1) variables error
correction representation exists if and only if they are cointegrated
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Vector Error Correction Model

I consider a VEC model, augmented by a deterministic term µt = µ0+µ1t

∆y t = µt +Πy t−1+Γ1∆y t−1+. . .+Γp−1∆y t−p+1+εt

where Π = αβ′ and in addition also Π = −(I−A1−. . .−Ap) and
Γi = −(Ai+1+. . .+Ap) for i = 1, . . . , p−1

I with n variables there are up to n−1 cointegrating vectors, so β is in
general a matrix with n columns and number of rows equal to number of
cointegrating vectors (i.e. number of long-run relationships)

I similarly α is in general a matrix with n rows and number of columns equal
to number of cointegrating vectors, element in row i column j represents
the correction of variable i to a deviation in j long-run relationship

I note that if Π = 0 VEC model above become a reduced form VAR(p)
model estimated on differenced data

I if Π contains non-zero elements estimating a VAR on differenced data ∆y t
leads to omitted variable bias - it is not appropriate to estimate a VAR
using first differences if the variables are cointegrated
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Cointegration Test - Johansen’s Methodology

I recall: rank of a matrix is defined as the number of linearly independent
rows it contains

I since Π has as many linearly independent rows as there are cointegrating
vectors β, it is possible to test for cointegration using rank of matrix Π
I if rank(Π) = 0 then y t are I(1) but not cointegrated
I if 0 < rank(Π) < n then y t are cointegrated with r = rank(Π) linearly

independent long-run relationships
I if rank(Π) = n then y t must actually be I(0) weakly stationary and there is

no cointegration among them

I e.g. in the previous bivariate example where we had

Π =
(
α1 α1β2
α2 α2β2

)
the two rows are linearly dependent, rank(Π) = 1, since there is only one
cointegrating vector β = (1, β2)′
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Cointegration Test - Johansen’s Methodology

I let λ̂1 > λ̂2 > . . . λ̂n be the estimated eigenvalues of Π
I if rank(Π) = r then λ̂r+1, . . . , λ̂n should be small, close to 0
I to test H0: rank(Π) = r against HA: rank(Π) > r for r = 0, 1, . . . , n−1 we

use trace statistic

λtrace(r) = −T
n∑

i=r+1

log(1−λ̂i )

I to test H0: rank(Π) = r against HA: rank(Π) = r +1 for r = 0, 1, . . . , n−1
we use maximum eigenvalue statistic

λmax (r) = −T log(1−λ̂r+1)

I results of trace and max eigenvalue test may be contradictory; if that
happens max eigenvalue test is usually prioritized
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Cointegration Test - Johansen’s Methodology

I for each of the two tests we follow a sequential procedure
I for example with trace test we would proceed as follows

I step 1: test H0 : rank(Π) = 0 against HA : rank(Π) > 0, if H0 is not rejected
we conclude that y t are not cointegrated, otherwise we move to the next step

I step 2: test H0 : rank(Π) = 1 against HA : rank(Π) > 1, if H0 is not rejected
we conclude that there is one cointegrating vector, otherwise we move to
next step

I in general in step i for i = 1, 2, . . . , n−1 we test H0 : rank(Π) = i against
HA : rank(Π) > i , if H0 is not rejected we conclude that there are i
cointegrating vectors, otherwise we move to next step

I this procedure is continued until the null is not rejected

I with max eigenvalue test the HA is different, but the overall sequential
approach is the same
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Cointegration Test - Johansen’s Methodology, An Example

I data for Denmark, 1974Q1-1987Q3, y t = (log(M2t/Pt), log Yt , ib
t , id

t )′
where log(M2t/Pt) is log of money supply M2 deflated by price index,
log Yt is log of real income, ib

t is bond rate, id
t is deposit rate

I based on unit root tests all series appear to be I(1)
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Cointegration Test - Johansen’s Methodology, An Example
library(magrittr)
library(tidyverse)
library(timetk)
library(zoo)
library(lubridate)
library(urca)
library(vars)
library(ggfortify)
library(egg)
library(qqplotr)

# set default theme for ggplot2
theme_set(theme_bw() +

theme(strip.text.x = element_text(hjust = 0),
strip.text.y = element_text(hjust = 1),
axis.ticks = element_blank(),
strip.background = element_blank()))

# load data to estimate money demand function of Denmark, 1974Q1 to 1987Q3
data(denmark)

# convert data into tibble format
denmark_tbl <-

denmark %>%
as_tibble() %>%
mutate(yearq = as.yearqtr(ENTRY, format = "%Y:%q")) %>%
dplyr::select(yearq, LRM, LRY, IBO, IDE)

# convert data into ts format
denmark_ts <-

denmark_tbl %>%
tk_ts(select = -yearq, start = year(.$yearq[1]), frequency = 4)
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Cointegration Test - Johansen’s Methodology, An Example

 

first differences
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Data set for Denmark from Johansen & Juselius (1990)
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Cointegration Test - Johansen’s Methodology, An Example

# trace test
denmark_ca <- ca.jo(denmark_ts, ecdet = "const", type = "trace", spec = "transitory", season = 4)
summary(denmark_ca)

##
## ######################
## # Johansen-Procedure #
## ######################
##
## Test type: trace statistic , without linear trend and constant in cointegration
##
## Eigenvalues (lambda):
## [1] 4.331654e-01 1.775836e-01 1.127905e-01 4.341130e-02 -7.250439e-16
##
## Values of teststatistic and critical values of test:
##
## test 10pct 5pct 1pct
## r <= 3 | 2.35 7.52 9.24 12.97
## r <= 2 | 8.69 17.85 19.96 24.60
## r <= 1 | 19.06 32.00 34.91 41.07
## r = 0 | 49.14 49.65 53.12 60.16
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Cointegration Test - Johansen’s Methodology, An Example

# max eigenvalue test
denmark_ca <- ca.jo(denmark_ts, ecdet = "const", type = "eigen", spec = "transitory", season = 4)
summary(denmark_ca)

##
## ######################
## # Johansen-Procedure #
## ######################
##
## Test type: maximal eigenvalue statistic (lambda max) , without linear trend and constant in cointegration
##
## Eigenvalues (lambda):
## [1] 4.331654e-01 1.775836e-01 1.127905e-01 4.341130e-02 -7.250439e-16
##
## Values of teststatistic and critical values of test:
##
## test 10pct 5pct 1pct
## r <= 3 | 2.35 7.52 9.24 12.97
## r <= 2 | 6.34 13.75 15.67 20.20
## r <= 1 | 10.36 19.77 22.00 26.81
## r = 0 | 30.09 25.56 28.14 33.24
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Cointegration Test - Johansen’s Methodology, An Example

I trace test suggests that y t are not cointegrated, we can’t reject
H0 : rank(Π) = 0

I max eigenvalue test however suggests that y t are cointegrated with one
cointegrating relationship, we can first reject H0 : rank(Π) = 0 and
afterwards can’t reject H0 : rank(Π) = 1
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Cointegration Test - Johansen’s Methodology, An Example
I function cajorols estimates the VEC model, given cointegration rank r

denmark_vec <- cajorls(denmark_ca, r = 1)
denmark_vec

## $rlm
##
## Call:
## lm(formula = substitute(form1), data = data.mat)
##
## Coefficients:
## LRM.d LRY.d IBO.d IDE.d
## ect1 -0.212955 0.115022 0.023177 0.029411
## sd1 -0.057653 -0.026826 -0.000400 -0.004830
## sd2 -0.016305 0.007842 0.007622 -0.001178
## sd3 -0.040859 -0.013083 0.004627 -0.002885
## LRM.dl1 0.262771 0.602668 0.057349 0.061340
## LRY.dl1 -0.144254 -0.142828 0.144224 0.017741
## IBO.dl1 -0.040115 -0.290609 0.310660 0.264939
## IDE.dl1 -0.670698 -0.182561 0.203769 0.212009
##
##
## $beta
## ect1
## LRM.l1 1.000000
## LRY.l1 -1.032949
## IBO.l1 5.206919
## IDE.l1 -4.215879
## constant -6.059932

I more detailed output with standard errors, t statistics and p-values can be
obtained using summary(denmark_vec$rlm)
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Cointegration Test - Johansen’s Methodology, An Example

I cointegrating vector is estimated as β = (1,−1.03, 5.21,−4.22,−6.06)′

I adjustment parameters are estimated as α = (−0.213, 0.115, 0.023, 0.029)′
which is consistent with a stable error correcting mechanism

I note that we have included a constant in the cointegrating relationship
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Deterministic Terms in VEC Model
five possible specifications of deterministic terms µt = µ0+µ1t in VEC model
1. µt = 0 (no constant)

∆y t = αβ′y t−1+Γ1∆y t−1+. . .+Γp−1∆y t−p+1+εt

yi,t are I(1) with no drift, cointegrating relationships β′y t have zero mean

2. µt = µ0 = αδ0 (restricted constant)
∆y t = α(β′y t−1+δ0)+Γ1∆y t−1+. . .+Γp−1∆y t−p+1+εt

yi,t are I(1) with no drift, cointegrating relationships have non zero mean

3. µt = µ0 (unrestricted constant)
∆y t = µ0+αβ′y t−1+Γ1∆y t−1+. . .+Γp−1∆y t−p+1+εt

yi,t are I(1) with drift, cointegrating relationships may have non zero mean

4. µt = µ0+αδ1t (restricted trend)
∆y t = µ0+α(β′y t−1+δ1t)+Γ1∆y t−1+. . .+Γp−1∆y t−p+1+εt

yi,t are I(1) with drift, cointegrating relationships β′y t have linear trend

5. µt = µ0+µ1t (unrestricted trend)
∆y t = µ0+µ1t +αβ′y t−1+Γ1∆y t−1+. . .+Γp−1∆y t−p+1+εt

yi,t are I(1) and have a drift and a quadratic trend, β′y t have linear trend
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Example: Bivariate VEC with Deterministic Components
I let y t = (y1,t , y2,t)′ follow a VEC model ∆y t = µt +Πy t−1+εt with

Π = αβ′ =
[
−0.2
0.2

] [
1 −1

]
=
[
−0.2 0.2
0.2 −0.2

]
so that the adjustment parameters are α1 = −0.2, α2 = 0.2 and
cointegrating relationship is β′y t = y1,t−y2,t

I consider now the following specifications of deterministic components
I case 1: if µt = 0, there is no drift, and E(β′y t ) = 0
I case 2: if

µt =
[

0.4
−0.4

]
so that µt = αδ0 with δ0 = −2, there is no drift, and E(β′y t ) = −δ0 = 2

I case 3: if
µt =

[
0.1
1.5

]
then y1,t and y2,t have a drift and E(β′y t ) 6= 0

I case 4: if
µt =

[
0.1
0.4

]
+
[
−0.3
0.3

]
t

so that µt = µ0+αδ1t with δ1 = 1.5, there is drift, and also linear trend in
cointegrating relationship, E(β′y t ) = −1.5t
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Example: Bivariate VEC with Deterministic Components
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Example: Bivariate VEC with Deterministic Components
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Specifying Lag Length and Deterministic Components

I lag length of VAR(p) can be determined using AIC, BIC, HQ
I function ca.jo from the urca package - use option ecdet to implement

I case 2, restricted constant: ecdet="const"
I case 3, unrestricted constant: ecdet="none"
I case 4, restricted trend: ecdet="trend"

I as a rough rule of thumb
I when all time series in y t are non-trending like interest rates, exchange rates,

inflation rate, unemployment rate, various growth rates, we use case 2
I when one or more time series in y t are trending, e.g. asset prices,

macroeconomic aggregates like GDP, consumption, exports, industrial
production, employment, national debt, M2 money stock, we start with case
4 or case 3, and can test whether we can impose restriction implied by case 2
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Hypothesis Testing - Restrictions on Cointegrating Relationship

I one advantage of Johansen’s approach is that it allows to easily test
restrictions on β and α

I we can also test the specification of deterministic components:
e.g. restricted constant in cointegrating relationship vs. presence of an
unrestricted drift term

I main idea: if restrictions imposed are consistent with data and thus not
binding, the number of cointegrating vectors stays same and rank(Π) stays
the same
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Hypothesis Testing - Restrictions on Cointegrating Relationship

I a test with H0: restricted constant (case 2) against HA : drift (case 3) is
implemented using lttest
lttest(denmark_ca, r = 1)

## LR-test for no linear trend
##
## H0: H*2(r<=1)
## H1: H2(r<=1)
##
## Test statistic is distributed as chi-square
## with 3 degress of freedom
## test statistic p-value
## LR test 1.98 0.58

I the results of the test above justify the specification used on previous slides
where ecdet="const"
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Hypothesis Testing - Restrictions on Cointegrating Relationship

I recall that in the Denmark money demand example where
y t = (log(M2t/Pt), log Yt , ib

t , id
t )′, the cointegrating relationship is

β1 log(M2t/Pt)+β2 log Yt +β3ib
t +β4id

t +β5

and the cointegrating vector was estimated as
β = (1,−1.03, 5.21,−4.22,−6.06)′, so that β2 is close to -1

I consider money demand M
p = L(Y , i) and suppose that we wanted to test

the hypothesis that L(Y , i) = Y L̃(i) so that the velocity of money
v = pY /M is a function of interest rate i since v = Y /(M/p) = 1/L̃(i)

I money demand equation M
p = Y L̃(i) where L̃(i) = γ0e−γ1 i then implies a

cointegrating relationship

log M
p −log Y +γ1i−log γ0

I this amounts to testing a restriction on the cointegration vector β2 = −β1,
since with normalization β1 = 1 we get β2 = −1
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Hypothesis Testing - Restrictions on Cointegrating Relationship

I to impose constraint β2 = −β1 on the cointegrating vector let
Ψ = (ψ1, ψ2, ψ3, ψ4)′ and define matrix H as

H =


1 0 0 0
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


so that the cointegrating vector is β = HΨ = (ψ1,−ψ1, ψ2, ψ3, ψ4)′

I in general, to impose some linear constraints R ′β = 0 on cointegrating
vectors, construct matrix H such that β = HΨ and use blrtest function
from the urca package
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Hypothesis Testing - Restrictions on Cointegrating Relationship
# test for restricted cointegrating vector betta
rest_betta <- matrix(data = c(1,-1,0,0,0,

0,0,1,0,0,
0,0,0,1,0,
0,0,0,0,1),

nrow = 5, ncol = 4)
blrtest(denmark_ca, H = rest_betta, r = 1) %>% summary()

##
## ######################
## # Johansen-Procedure #
## ######################
##
## Estimation and testing under linear restrictions on beta
##
## The VECM has been estimated subject to:
## beta=H*phi and/or alpha=A*psi
##
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] -1 0 0 0
## [3,] 0 1 0 0
## [4,] 0 0 1 0
## [5,] 0 0 0 1
##
## Eigenvalues of restricted VAR (lambda):
## [1] 0.4327 0.1722 0.0436 0.0056
##
## The value of the likelihood ratio test statistic:
## 0.04 distributed as chi square with 1 df.
## The p-value of the test statistic is: 0.84
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Hypothesis Testing - Restrictions on Adjustment Parameters

I restrictions on adjustment parameters α can be implemented and tested in
a similar way as restrictions on cointegrating vectors β

I running summary(denmark_vec$rlm) shows that in the example with
money demand for Denmark, α1 looks significant but α2, α3, α4 appear to
be only marginally significant

I it thus makes sense to test the hypothesis α2 = α3 = α4 = 0
I to impose the above restriction let Ψ = ψ1 and define matrix A as

A =

100
0


so that the adjustment vector is α = AΨ = (ψ1, 0, 0, 0)′

I in general, to impose linear constraints R ′α = 0 on the adjustment
parameters vectors, construct matrix A such that α = AΨ and use
alrtest function from the urca package
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Hypothesis Testing - Restrictions on Adjustment Parameters

# test for restricted adjustment parameters alpha
rest_alpha <- matrix(data = c(1,0,0,0), nrow = 4, ncol = 1)
alrtest(denmark_ca, A = rest_alpha, r = 1) %>% summary()

##
## ######################
## # Johansen-Procedure #
## ######################
##
## Estimation and testing under linear restrictions on beta
##
## The VECM has been estimated subject to:
## beta=H*phi and/or alpha=A*psi
##
## [,1]
## [1,] 1
## [2,] 0
## [3,] 0
## [4,] 0
##
## Eigenvalues of restricted VAR (lambda):
## [1] 0.3573 0.0000 0.0000 0.0000 0.0000
##
## The value of the likelihood ratio test statistic:
## 6.66 distributed as chi square with 3 df.
## The p-value of the test statistic is: 0.08
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Hypothesis Testing - Restrictions on Cointegrating Relationship
I it is possible to test restrictions on α and β jointly using ablrtest

ablrtest(denmark_ca, A = rest_alpha, H = rest_betta, r = 1) %>% summary()
##
## ######################
## # Johansen-Procedure #
## ######################
##
## Estimation and testing under linear restrictions on alpha and beta
##
## The VECM has been estimated subject to:
## beta=H*phi and/or alpha=A*psi
##
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] -1 0 0 0
## [3,] 0 1 0 0
## [4,] 0 0 1 0
## [5,] 0 0 0 1
##
##
## [,1]
## [1,] 1
## [2,] 0
## [3,] 0
## [4,] 0
##
## Eigenvalues of restricted VAR (lambda):
## [1] 0.3564 0.0000 0.0000 0.0000
##
## The value of the likelihood ratio test statistic:
## 6.73 distributed as chi square with 3 df.
## The p-value of the test statistic is: 0.08
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Hypothesis Testing - Restrictions on Cointegrating Relationship
I to obtain a VEC with restrictions imposed on β use output of blrtest as

input in function cajorols
denmark_ca_rest <- blrtest(denmark_ca, H = rest_betta, r = 1)
denmark_vec_rest <- cajorls(denmark_ca_rest, r = 1)
denmark_vec_rest

## $rlm
##
## Call:
## lm(formula = substitute(form1), data = data.mat)
##
## Coefficients:
## LRM.d LRY.d IBO.d IDE.d
## ect1 -0.2119917 0.1075103 0.0226379 0.0296896
## sd1 -0.0574493 -0.0265878 -0.0004005 -0.0048785
## sd2 -0.0164126 0.0076694 0.0076193 -0.0011495
## sd3 -0.0407508 -0.0130722 0.0046191 -0.0029036
## LRM.dl1 0.2556063 0.5999246 0.0577177 0.0627184
## LRY.dl1 -0.1379518 -0.1459504 0.1435555 0.0168536
## IBO.dl1 -0.0311275 -0.2721596 0.3111305 0.2623262
## IDE.dl1 -0.6646265 -0.1995151 0.2022586 0.2119758
##
##
## $beta
## ect1
## LRM.l1 1.000000
## LRY.l1 -1.000000
## IBO.l1 5.300435
## IDE.l1 -4.290432
## constant -6.264457
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Forecasting using a VEC model
I to construct forecasts, IRFs and FEVDs, we need to first transform the

estimated VEC model in differences into a VAR in levels
denmark_var <- vec2var(denmark_ca, r = 1)

denmark_var_f <- predict(denmark_var, n.ahead = 8)
autoplot(denmark_var_f) + facet_wrap(~variable, ncol = 1, scales = "free_y")
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Application: Pairs Trading

I cointegration and error correction model are used in the pairs trading
strategy

I arbitrage pricing theory - if two stocks have similar characteristics, their
prices must be more or less the same

I pairs trading involves selling the higher priced stock and buying the lower
priced stock with the hope that the mispricing will correct itself in the future

I this strategy has been used on Wall Street for more than twenty years
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Application: Pairs Trading

I consider two stocks with log prices pi,t = log Pi,t for i = 1, 2 that follow
random walk pi,t = pi,t−1+ri,t where ri,t are the serially uncorrelated log
returns

I if the two stocks have similar risk factors, p1,t and p2,t will be driven by a
common stochastic trend and thus cointegrated

I linear combination wt = p1,t−βp2,t will thus be I(0) for some parameter β
I the stationary series wt is referred to as the spread between the two log

stock prices
I the two price series will follow error correction model[

∆p1,t
∆p2,t

]
=
[
α1
α2

] [
p1,t−1−βp2,t−1−µ

]
+
[
ε1,t
ε2,t

]
I α1 and α2 should have opposite signs, indicating reversion to the equilibrium
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Application: Pairs Trading

I since spread wt is I(0) it is mean reverting
I trade are carried out when wt = p1,t−βp2,t deviates substantially from its

mean µ
I one possible trading strategy

I buy a share of stock 1 and short β shares of stock 2 at time t if wt = µ−∆
I unwind the position at time t+i if wt+i = µ+∆

I here ∆ is chosen such that 2∆ > η, where η is the costs of carrying out the
two trades

I net profit is 2∆−η
I a modified trading strategy: if ∆ > η it is possible to unwind the position

at time t +i ′ if wt+i′ = µ which shortens the holding period of the portfolio
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Application: Pairs Trading

library(tidyverse)
library(timetk)
library(vars)
library(urca)

theme_set(theme_bw())

# stock price data for Billiton Ltd. of Australia (BHP) and Vale S.A. of Brazil (VALE),
# two multinational companies in natural resources industry that face similar risk factors
# this data can be downloaded from http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/
webpage <- "http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/"

y_tbl <-
inner_join(read_delim(file = str_c(webpage, "d-bhp0206.txt"), delim = " "),

read_delim(file = str_c(webpage, "d-vale0206.txt"), delim = " "),
by = c("Mon", "day", "year"), suffix = c("_BHP", "_VALE")) %>%

gather(variable, value, -c("Mon", "day", "year")) %>%
filter(str_sub(variable, 1, 8) == "adjclose") %>%
mutate(date = (year*10000 + Mon*100 + day) %>% as.character() %>% as.Date("%Y%m%d" ),

variable = str_sub(variable, 10, -1),
logvalue = log(value))

# convert into zoo
y_zoo <-

y_tbl %>%
dplyr::select(date, variable, logvalue) %>%
spread(variable, logvalue) %>%
tk_zoo(select = -date, date_var = date)
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Application: Pairs Trading

# time series plot - log of adjusted close price for BHP and VALE
y_tbl %>%

ggplot(aes(x = date, y = value, col = variable)) +
geom_line() +
scale_y_log10(breaks = c(0,10,20,30,40)) +
scale_color_manual(values = c("gray10","gray60")) +
labs(x = "", y = "", col = "", title = "Log of adjusted close price for BHP and VALE")
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Application: Pairs Trading

# determine number of lags to be included in cointegration test and in VEC model
y_var_ic <- VARselect(y_zoo, type = "const")
nlags <- y_var_ic$selection["AIC(n)"]

# perform trace and maximum eigenvalue cointegration tests
y_ca <- ca.jo(y_zoo, ecdet = "const", type = "trace", K = nlags, spec = "transitory")
summary(y_ca)
y_ca <- ca.jo(y_zoo, ecdet = "const", type = "eigen", K = nlags, spec = "transitory")
summary(y_ca)
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Application: Pairs Trading

##
## ######################
## # Johansen-Procedure #
## ######################
##
## Test type: trace statistic , without linear trend and constant in cointegration
##
## Eigenvalues (lambda):
## [1] 4.148282e-02 8.206470e-03 2.825535e-18
##
## Values of teststatistic and critical values of test:
##
## test 10pct 5pct 1pct
## r <= 1 | 7.78 7.52 9.24 12.97
## r = 0 | 47.77 17.85 19.96 24.60

##
## ######################
## # Johansen-Procedure #
## ######################
##
## Test type: maximal eigenvalue statistic (lambda max) , without linear trend and constant in cointegration
##
## Eigenvalues (lambda):
## [1] 4.148282e-02 8.206470e-03 2.825535e-18
##
## Values of teststatistic and critical values of test:
##
## test 10pct 5pct 1pct
## r <= 1 | 7.78 7.52 9.24 12.97
## r = 0 | 40.00 13.75 15.67 20.20
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Application: Pairs Trading

# estimate VEC model
y_vec <- cajorls(y_ca, r = 1)
y_vec

## $rlm
##
## Call:
## lm(formula = substitute(form1), data = data.mat)
##
## Coefficients:
## BHP.d VALE.d
## ect1 -0.06731 0.02546
## BHP.dl1 -0.10949 0.06169
## VALE.dl1 0.07067 0.04768
##
##
## $beta
## ect1
## BHP.l1 1.000000
## VALE.l1 -0.717704
## constant -1.828460

so the estimated VEC model takes form[
∆p1,t
∆p2,t

]
=
[
−0.067
0.025

]
[p1,t−1−0.717p2,t−1−1.828]+

[
−0.109 0.071
0.061 0.047

] [
∆p1,t−1
∆p2,t−1

]
+
[
ε1,t
ε2,t

]

60 / 64



Application: Pairs Trading

I the spread is thus calculated as wt = p1,t−β̂p2,t = p1,t−0.717p2,t
# spread, its mean and standard deviation
w <- y_zoo %*% y_vec$beta[1:2]
mean(w)

## [1] 1.821159
sd(w)

## [1] 0.04418623

I the mean spread is µ̂ = 1.821
I the standard deviation is σ̂ = 0.044
I given that σ̂ is quite large, it is possible to choose trading strategy by

setting ∆ = 0.045 which yields log return for each pairs trading 2∆ = 0.09
I as shown in the figure on the next slide, wt moves between µ̂−0.045 and
µ̂+0.045 relatively often, so there are many pairs-trading opportunities
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Application: Pairs Trading
# plot spread and the boundaries that would trigger pairs trading
w %>%

tk_tbl(rename_index = "date") %>%
ggplot(aes(x = date, y = V1)) +

geom_line() +
geom_hline(yintercept = mean(w), linetype = "solid") +
geom_hline(yintercept = mean(w) + 0.045, linetype = "dashed") +
geom_hline(yintercept = mean(w) - 0.045, linetype = "dashed") +
labs(x= "", y = "", title = "Spread and boundaries that would trigger pairs trading")
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Application: Pairs Trading

I note that this illustrative example is based on in-sample analysis
I a realistic demonstration would require to assess the out-of-sample

performance
I identifying cointegrated pairs of stocks that share similar risk factors may by

quite challenging
I main issue: if a lot of traders exploit a particular pairs trading strategy, the

stock may cease to be cointegrated

63 / 64



Summary VAR vs VEC

I if variables y t are I(0) we don’t difference data and estimate VAR in levels
I if variables y t are I(1) we first test them for cointegration

I if they are cointegrated we estimate a VEC model
I if they are not cointegrated we difference the data and estimate a VAR model

on first differences ∆yt
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