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Motivation
I consider again the bivariate VAR(1) model for house price indices in Los

Angeles and Riverside MSAs with yt = (∆ log pLA
H,t ,∆ log pRI

H,t) and
B0yt = c0+B1y t−1+εt

I to estimate the model, we need to convert it into a reduced form VAR(1),
by premultiplying it with B−10 to obtain

y t = c +A1y t−1+et

where c = B−10 c0, A1 = B−10 B1, et = B−10 εt , var(et) = Σe = B−10 ΣεB−10
′

I the results

LA RI
LA(-1) 0.801∗∗∗ 0.676∗∗∗

(0.100) (0.138)
RI(-1) 0.044 0.260∗∗

(0.083) (0.114)
const 0.002 −0.002

(0.001) (0.002)
Observations 145 145
R2 0.729 0.648
Adjusted R2 0.726 0.643
Residual Std. Error (df = 142) 0.015 0.021
F Statistic (df = 2; 142) 191.454∗∗∗ 130.770∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Motivation

I we can estimate any reduced form VAR(p) model

y t = A1y t−1+. . .+Apy t−p +et

easily using equation by equation OLS
I if we are only interested in forecasting the reduced form VAR(p) model is

all we need
I but to answer some other questions we need to know the coefficients of the

original structural VAR(p) model

B0y t = B1y t−1+. . .+Bpy t−p +εt

I unlike errors et in the reduced form model, structural shocks εt are not
correlated, and have economic interpretation

I to construct impulse response functions (IRFs) and forecast error variance
decompositions (FEVDs), B0 is needed to obtain structural innovations
from reduced form VAR using εt = B0et
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Reduced Form Errors vs Structural Shocks

note that
I IRFs trace out the response of y t to structural shocks εt , not reduced form

errors et

I FEVD gives the fraction of variance of y t caused by different structural
shocks εt , not reduced form errors et

I since εt = B0et to construct the IRFs and FEVD for a VAR(p) model we
need to know B0, in addition to A1, . . . ,Ap
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Identification of Structural Shocks

Q: Is it possible to recover c0, {Bi}p
i=0 and Σε from c, {Ai}p

i=1 and Σe?

A: Only if we are willing to impose additional restrictions.
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Identification of Structural Shocks

Example: bivariate VAR(1)
I reduced form VAR(1) yields estimates of 9 parameters in c, A1, Σe(

y1,t
y2,t

)
=
(

c1
c2

)
+
(

a1,11 a1,12
a1,21 a1,22

)(
y1,t−1
y2,t−1

)
+
(

e1,t
e2,t

)
Σe =

(
σ21 σ12
σ12 σ22

)
I we are trying to uncover c0, B0, B1, Σε which contain 10 unknown values(
1 b0,12

b0,21 1

)(
y1,t
y2,t

)
=
(

c0,1
c0,2

)
+
(

b1,11 b1,12
b1,21 b1,22

)(
y1,t−1
y2,t−1

)
+
(
ε1,t
ε2,t

)
Σε =

(
σ2ε1 0
0 σ2ε2

)
I one additional restriction on parameters thus needs to be imposed in the VAR(1)
I one possible way to do this is the Choleski decomposition

I impose b0,12 = 0 so that y1,t has contemporaneous effect on y2,t , but y2,t
does not have a contemporaneous effect on y1,t

I this also means that both ε1,t and ε2,t have a contemporaneous effect on
y2,t , but only ε1,t has an effect on y1,t

I this is how vars package constructs IRFs and FEVDs
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Identification of Structural Shocks

general case, a VAR(p) model with k variables
I reduced form has k+pk2+k(k+1)/2 parameters
I structural form has k+(p+1)k2+k parameters
I identification thus requires k(k−1)/2 additional restrictions
I Choleski decomposition: set elements of B0 above main diagonal equal zero
I ordering of variables in the VAR(p) model thus matters:

yi,t is only affected by shocks ε1,t , . . . , εi,t , remaining shocks εi+1,t , . . . , εk,t
have no contemporaneous effect on yi,t and will only affect yi,t′ for t ′ > t
indirectly through their effect on yi+1,t , . . . , yk,t
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Identification of Structural Shocks

I Choleski decomposition is one way to uncover B0

I if Choleski decomposition is used, ordering of variables in VAR matters for
the IRFs and FEVDs

I the ordering however often does not have direct economic interpretation
and is ad hoc

I we will thus look at several alternative ways of introducing restrictions
consistent with some economic theory
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Choleski Decomposition Approach

I Choleski decomposition: for a positive definite matrix A there exist a lower
unitriangular matrix L and a diagonal matrix D such that A = LDL′

I since εt = B0et or equivalently et = B−10 εt we have

Σε = B0ΣeB′0 Σe = B−10 ΣεB−10
′

one particular way to obtain B−10 is thus to make use of Choleski
decomposition and set B−10 = L
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Choleski Decomposition Approach

I if Choleski decomposition is used the elements of B0 above main diagonal
are equal zero, and ordering of variables in the VAR(p) model matters:
I yi,t is directly affected only by shocks ε1,t , . . . , εi,t
I shocks εi+1,t , . . . , εk,t have no contemporaneous effect on yi,t and will only

affect yi,t′ for t′ > t indirectly through their effect on yi+1,t , . . . , yk,t

I how much the order of variables matters, and how much the IRFs and FEVD
change depends on the magnitude of correlation among elements of et

I for example, in a bivariate VAR(1)
I if corr(e1,t , e2,t ) = 0 then εi,t = ei,t so structural shocks are identical to

reduced form errors, and ordering does not matter at all
I if corr(e1,t , e2,t ) = 1 then there is actually only one structural shock and

whichever variable is first determines which structural error its going to be
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Choleski Decomposition Approach - Example
y t = (∆ log pLA

H,t ,∆ log pRI
H,t)′ y t = (∆ log pRI

H,t ,∆ log pLA
H,t)′

LA
R

I

0.0%

0.5%

1.0%

1.5%

0.0%

0.5%

1.0%

1.5%

LA
R

I

0.0%

0.5%

1.0%

1.5%

0.0%

0.5%

1.0%

1.5%

LA RI

variable ordering: LA, RI

LA RI

variable ordering: RI, LA

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Impulse Response Functions, VAR(1) for House Price Index in Los Angeles and Riverside MSAs 
(rows: response, columns: impulse)
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Structural VARs

I structural vector autoregressive models (SVAR): explicit modeling of
contemporaneous interdependence between the left-hand side variables

I in some cases there might be a theoretical reason to expect that some
variable has no contemporaneous effect on another which would give some
guidance for ordering of variables

I to some extent the ordering and resulting Choleski decomposition is ad hoc,
and often does not have direct economic interpretation

I it is also not practical to try all possible orderings, since there are k! of
them - with k = 4 that already means 24 different possibilities
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Structural VARs

I instead of using Choleski decomposition, in some cases it is possible to use
an economic theory to impose restrictions to achieve identification of
parameters of the structural VAR

I short run restrictions - restrictions on B0 which captures the
contemporaneous relationships of variables - zero (exclusion) restrictions e.g.
b0,12 = 0, symmetry restrictions e.g. b0,12−b0,21 = 0, other linear
restrictions e.g. b0,12+b0,21 = 1, . . .

I long run restrictions - restrictions on B0 arise by dividing shocks into two
groups - those that have a permanent effect on some variables, and those
that have no permanent effects on any variable

I sign restrictions - restrictions on B0 which imply that IRF for some shock
has certain signs at certain horizons, e.g. “εj,t does not increase yi,t for s
periods”
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Short Run Restrictions

I note that Choleski decomposition is essentially a particular way to impose
short run restrictions that imposes a recursive structure

I example: if y t = (∆rt ,∆ log pt ,∆ log yt)′ the Choleski decomposition of Σe
yields a lower diagonal matrix B0 so that in terms of short run restrictions
we have b12 = b13 = b23 = 0, this also implies the following ordering for
contemporaneous causality rt → pt → yt

14 / 40



Short Run Restrictions

I consider a four variable macroeconomic model based on IS-LM framework

Yt = Pα1
t eεas,t

Yt = e−α2(rt−∆ log Pt−εis,t )

Mt

Pt
= Y α3

t
eα4rt

e−εmd,t

Mt = Mt−1eεms,t

where Yt is output, Mt money, rt nominal interest rate, Pt price level
I first equation thus describes the short run aggregate supply, second one IS

curve, third one LM curve, and the last one money supply
I let y t = (logYt , rt , logPt , logMt)′, take a log of each equation, to obtain

logYt = α1 logPt +εas,t

logYt = −α2(rt−∆ logPt−εis,t)
logMt−logPt = α3 logYt−α4rt−εmd,t

logMt = logMt−1+εms,t
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Short Run Restrictions

I model thus implies following matrix summarizing contemporaneous links

B0 =

 1 0 b0,13 0
b0,21 1 −1 0
b0,31 b0,32 1 −1
0 0 0 1


where b0,13 = −α1, b0,21 = 1/α2, b0,31 = α3, b0,32 = −α4

I note that with four variables 6 restrictions are needed for exact
identification, since k(k−1)/2 = 6 if k = 4

I model is actually overidentified - it introduces two additional restrictions, by
restricting b0,23 = −1 and b0,34 = −1
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Overidentifying Restrictions

I some theoretical models can suggest more than k(k−1)/2 restrictions
I testing whether these overidentifying restrictions are consistent with data:

1. first, estimate reduced form VAR model, obtain Σe
2. since εt = B0et and Σe = B−10 ΣεB−10

′, given the imposed restrictions use
maximum likelihood approach to choose remaining parameters of B0 and
Σε in order to maximize the likelihood function

−T
2 log |B−10 ΣεB−10

′|− 1
2

T∑
t=1

(B0et)′Σ−1ε (B0et)

and let ΣR = B−10 ΣεB−10
′ be the resulting restricted variance matrix

3. denote by R number of overidentifying restrictions i.e. number of
restrictions exceeding k(k−1)/2, then

|ΣR |−|Σe |

has χ2 distribution with R degrees of freedom
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Overidentifying Restrictions Application - Enders and Holt (2013)
I four variable VAR: y t = (pet , ext , rt , pgt)′ where pet is log of energy price

index deflated by the producer price index, ext is real trade weighted
exchange rate of U.S. dollar, rt is 3-month T-bill rate adjusted for inflation,
pgt is log of price index of grain deflated by producer price index

I exact identification requires 6 restrictions: if k = 4 then k(k−1)/2 = 6
I test whether system with 9 restrictions is consistent with data

B0 =

 1 0 0 0
0 1 0 0
0 0 1 0

b0,41 b0,42 b0,43 1


results in χ2 statistic of 13.53 with 3 degrees of freedom and p = 0.003, so
restrictions are strongly rejected by data

I strongly correlated residuals for exchange and interest rate equation suggest
using a modified system where real exchange rate is contemporaneously
affected by real interest rate shocks

B0 =

 1 0 0 0
0 1 b0,23 0
0 0 1 0

b0,41 b0,42 b0,43 1


which yields χ2 statistic of 4.57 with 2 degrees of freedom and p = 0.102,
so restrictions are not binding
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Long Run Restrictions - Blanchard & Quah (1989)
I in Blanchard and Quah, εi shocks are not considered as shocks directly

associated with yi , they instead assert that some shocks have permanent
effects and others only temporary effects on some variables

I note: to use Blanchard and Quah technique, at least one variable must be
nonstationary, I(0) variables do not have a permanent component

I consider a reduced form VAR A(L)y t = et with vector moving average
representation

y t = Ψ(L)εt =
∞∑
`=0

Ψ`εt−`

I elements of the impulse-response function can be obtained from row i and
column j element of Ψ`

ψ`,ij = ∂yt+`,i

∂εt,j

I cumulative impact up to period `

ψ∗`,ij =
∑̀
s=0

ψs,ij = ∂

∂εt,j

∑̀
s=0

yt+s,i
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Long Run Restrictions - Blanchard & Quah (1989)
I example: let y t = (∆ logGDPt ,URt)′, with both variables demeaned, and

let ε1,t represent the technology shocks and ε2,t the non-technology shocks
I the moving average representation of the bivariate VAR is[

y1,t
y2,t

]
=
[

Ψ11(L) Ψ12(L)
Ψ21(L) Ψ22(L)

][
ε1,t
ε2,t

]
and the equation for ∆ logGDPt is thus

y1,t = Ψ11(L)ε1,t +Ψ12(L)ε2,t =
∞∑
`=0

ψ`,11L`ε1,t +
∞∑
`=0

ψ`,12L`ε2,t

I long run constraint imposed: non-technology shocks only have a temporary
effect on the level of GDP and thus

lim
`→∞

∂ logGDPt+`

∂ε2,t
= 0

I equivalently, long run cumulative effect of non-technology shocks on the
growth rate of GDP so on ∆ logGDPt is zero, Ψ12(1) = 0

lim
`→∞

∂
∑`

s=0 ∆ logGDPt+s

∂ε2,t
= lim
`→∞

`∑
s=0

ψs,12 = 0
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Long Run Restrictions - Blanchard & Quah (1989)

I to get more insight how the Blanchard-Quah approach works consider a
structural VAR(1)

B0y t = B1y t−1+εt where var(εt) = Σε

I we can normalize Σε = I i.e. obtain σ2
εi = 1 if we divide each equation by

σεi ; this changes the diagonal elements of B0 from 1 into 1/σεi

I the associated reduced form VAR(1) is

y t = A1y t−1+et

where A1 = B−10 B1 and et = B−10 εt and var(et) = Σe = B−10 ΣεB−10
′

I estimating reduced form VAR yields A1 and Σe , the identification problem is
then to use these to recover parameters of structural VAR, B0, B1 and Σε

I since A1 = B−10 B1 once we know B0 we can use A1 to obtain B1 using
B1 = B0A1

I the main task is thus to determine the four elements of B0 since we have
normalized Σε = I
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Long Run Restrictions - Blanchard & Quah (1989)
consider a bivariate VAR(1) and denote the elements of B0 and B−10 as follows

B0 =
[
b0,11 b0,12
b0,21 b0,22

]
B−10 = 1

b0,11b0,22−b0,21b0,12

[
b0,22 −b0,12
−b0,21 b0,11

]
=
[
b̃0,11 b̃0,12
b̃0,21 b̃0,22

]
so that equation Σe = B−10 ΣεB−10

′ yields with normalization σ2
ε1 = σ2

ε2 = 1[
σ2
1 σ12

σ12 σ2
2

]
=
[
b̃0,11 b̃0,12
b̃0,21 b̃0,22

][
1 0
0 1

][
b̃0,11 b̃0,21
b̃0,12 b̃0,22

]
or equivalently

σ2
1 = b̃2

0,11+b̃2
0,12

σ12 = b̃0,11b̃0,21+b̃0,12b̃0,22
σ12 = b̃0,11b̃0,21+b̃0,12b̃0,22
σ2
2 = b̃2

0,21+b̃2
0,22

so we only have 3 independent equations but 4 unknowns
{b̃0,11, b̃0,12, b̃0,21, b̃0,22}

in order to get 4 equations in 4 unknowns {b̃0,11, b̃0,12, b̃0,21, b̃0,22} we next
impose one long run restriction
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Long Run Restrictions - Blanchard & Quah (1989)
I from the reduced form VAR by repeated substitution we have

y t = et +A1et−1+A2
1et−2+. . . =

∞∑
`=0

A`1et−` =
∞∑
`=0

A`1L`et

and using et = B−10 εt we get the vector moving average representation

y t = B−10 εt +A1LB−10 εt +A2
1L2B−10 εt +. . . =

( ∞∑
`=0

A`1L`
)

B−10 εt

I let
∞∑
`=0

A`1L` = (I +A1L+A2
1L2+. . .) = (I−A1L)−1

then
y t = (I−A1L)−1B−10 εt

I note that this condition can be also obtained from the reduced form VAR(1)
by rearranging it first as (I−A1L)y t = et from which
y t = (I−A1L)−1B−10 εt
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Long Run Restrictions - Blanchard & Quah (1989)
I thus let S be the matrix of long run cumulative effects of ε on y given by

S = (I +A1+A2
1+. . .)B−10 = (I−A1)−1B−10

I in a bivariate framework, Blanchard and Quah impose a constraint that
second shock has no cumulative long run effect on first variable, which
means that S12 = 0

I if we denote the elements of matrix (I−A1)−1 as

(I−A1)−1 =
[
ã11 ã12
ã21 ã22

]
the system of 4 equations in 4 unknowns {b̃0,11, b̃0,12, b̃0,21, b̃0,22} becomes

σ2
1 = b̃2

0,11+b̃2
0,12

σ12 = b̃0,11b̃0,21+b̃0,12b̃0,22
σ2
2 = b̃2

0,21+b̃2
0,22

0 = ã11b̃0,12+ã21b̃0,22
where the last condition corresponds to S12 = 0

I this system can be easily solved given parameters {σ2
1 , σ

2
2 , σ12, ã11, ã21}

(which come from Σe and A1)
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Long Run Restrictions - Blanchard & Quah (1989)

# obtain data on real GDP and unemployment rate
# construct approximate quarter-over-quarter GDP growth rates
y_tbl <- inner_join(tq_get("GDPC1", get = "economic.data",

from = "1947-01-01", to = "2018-12-31") %>%
rename(rGDP = price) %>%
mutate(dlrGDP = 100*(log(rGDP) - lag(log(rGDP)))),

tq_get("UNRATE", get = "economic.data",
from = "1947-01-01", to = "2018-12-31") %>%

rename(UR = price) %>%
tq_transmute(select = UR, mutate_fun = to.quarterly) %>%
mutate(date = as.Date(date)),

by = "date") %>%
mutate(yearq = as.yearqtr(date)) %>%
dplyr::select(yearq, dlrGDP, UR)

# Blanchard and Quah use 1950Q2 to 1987Q4 as sample, and demean the data
y_xts <- y_tbl %>%

filter(yearq >= "1950 Q2", yearq <= "1987 Q4") %>%
mutate_at(vars(dlrGDP,UR), funs(. - mean(.))) %>%
tk_xts(select= c("dlrGDP","UR"), date_var = yearq)
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Long Run Restrictions - Blanchard & Quah (1989)
# estimate reduced form VAR
mod_var <- VAR(y_xts, ic = "SC", lag.max = 8)

# Blanchard-Quah long run restriction: row 1 column 2 element of the cumulative effect matrix is 0
mod_svar <- BQ(mod_var)
summary(mod_svar)

##
## SVAR Estimation Results:
## ========================
##
## Call:
## BQ(x = mod_var)
##
## Type: Blanchard-Quah
## Sample size: 149
## Log Likelihood: -232.816
##
## Estimated contemporaneous impact matrix:
## dlrGDP UR
## dlrGDP 0.79328 -0.5393
## UR -0.03914 0.3787
##
## Estimated identified long run impact matrix:
## dlrGDP UR
## dlrGDP 0.5734 0.000
## UR -2.6987 6.159
##
## Covariance matrix of reduced form residuals (*100):
## dlrGDP UR
## dlrGDP 92.01 -23.53
## UR -23.53 14.50
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Long Run Restrictions - Blanchard & Quah (1989)

I in the output on the previous slide the contemporaneous impact matrix
reported is B−10 , it shows the immediate effect of εj,t on yi,t upon impact
##
## Estimated contemporaneous impact matrix:
## dlrGDP UR
## dlrGDP 0.79328 -0.5393
## UR -0.03914 0.3787

I rows refer to two variables (∆ logGDPt ,URt), and the columns to the two
shocks - technology shock ε1,t and non-technology shock ε2,t

I here on impact a positive one standard deviation technology shock increases
GDP by 0.793% and lowers unemployment rate by 0.0391 percentage points

I a negative one standard deviation non-technology shock lowers GDP on
impact by 0.539%, increases unemployment rate by 0.378 percentage points
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Long Run Restrictions - Blanchard & Quah (1989)

I the long run impact matrix reported shows the cumulative long run impact
lim`→∞

∑`

s=0 ψs,ij = 0
##
## Estimated identified long run impact matrix:
## dlrGDP UR
## dlrGDP 0.5734 0.000
## UR -2.6987 6.159

I the long run cumulative effect of any non-technology shock on GDP is 0
(this is the long run constraint we imposed)

I the long run cumulative effect of a single positive one standard deviation
technology shocks on GDP is to increase it by 0.576%
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Long Run Restrictions - Blanchard & Quah (1989)

# standard non-cumulative IRFs
svar_irf <- irf(mod_svar, n.ahead = 40, ci = .9)
# cumulative svar_irfs
svar_irf_c <- irf(mod_svar, n.ahead = 40, ci = .9, cumulative = TRUE)

# arrange IRF data into a tibble to be used with ggplot
svar_irf_tbl <-

bind_rows(# standard IRFs for UR
svar_irf %>%

keep(names(.) %in% c("irf", "Lower", "Upper")) %>%
modify_depth(2, as_tibble) %>%
modify_depth(1, bind_rows, .id = "impulse") %>%
map_df(bind_rows, .id = "key") %>%
dplyr::select(-dlrGDP) %>%
gather(response, value, -key, -impulse),

# cumulative IRFs for GDP
svar_irf_c %>%

keep(names(.) %in% c("irf", "Lower", "Upper")) %>%
modify_depth(2, as_tibble) %>%
modify_depth(1, bind_rows, .id = "impulse") %>%
map_df(bind_rows, .id = "key") %>%
dplyr::select(-UR) %>%
gather(response, value, -key, -impulse)) %>%

group_by(key, impulse, response) %>%
mutate(lag = row_number()) %>%
ungroup() %>%
# change signs for the non-technology shock IRFs so that they show effects of a positive shock
mutate(value = if_else(impulse == "UR", -value, value)) %>%
spread(key, value)
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Long Run Restrictions - Blanchard & Quah (1989)

# plot IRFs using ggplot
svar_irf_tbl %>%

mutate(impulse_label = case_when(impulse == "dlrGDP" ~ 1,
impulse == "UR" ~ 2) %>%

factor(labels = c("technology shock", "non-technology shock")),
response_label = case_when(response == "dlrGDP" ~ "log(GDP)",

response == "UR" ~ "Unemployment Rate") ) %>%
ggplot(aes(x = lag, y = irf)) +

geom_ribbon(aes(x = lag, ymin = Lower, ymax = Upper), fill = "gray50", alpha = .3) +
geom_line() +
geom_hline(yintercept = 0, linetype = "dashed") +
labs(x = "", y = "", title = "SVAR Impulse Response Functions") +
facet_grid(response_label ~ impulse_label, switch = "y", scales = "free_y")
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Long Run Restrictions - Blanchard & Quah (1989)
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Long Run Restrictions - Blanchard & Quah (1989)

I the peak effect for both shocks occurs 3 quarters after the shock hits the
economy

I in case of a positive one standard deviation shock to technology, at the
peak GDP increases by about 1% and unemployment rate falls by roughly
0.25 percentage points

I in case of a positive one standard deviation non-technology shock, at the
peak GDP increases by about 1% and unemployment rate falls by roughly
0.57 percentage points
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Long Run Restrictions - Blanchard & Quah (1989)

# construct longer cumulative IRFs, and keep non-technology shocks as negative one
svar_irf_c_longer <- irf(mod_svar, n.ahead = 100, cumulative = TRUE, boot = FALSE)

note that by construction the contemporaneous impact matrix from
summary(mod_svar)
##
## Estimated contemporaneous impact matrix:
## dlrGDP UR
## dlrGDP 0.79328 -0.5393
## UR -0.03914 0.3787

is identical to the elements of the IRFs for period 0 (impact period)
svar_irf_c_longer$irf[[1]][1,]

## dlrGDP UR
## 0.79328160 -0.03914466
svar_irf_c_longer$irf[[2]][1,]

## dlrGDP UR
## -0.5392647 0.3787316
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Long Run Restrictions - Blanchard & Quah (1989)

also note that the long run impact matrix from summary(mod_svar)
##
## Estimated identified long run impact matrix:
## dlrGDP UR
## dlrGDP 0.5734 0.000
## UR -2.6987 6.159

is essentially the same as the elements of the IRFs for period 100
svar_irf_c_longer$irf[[1]][101,]

## dlrGDP UR
## 0.5733992 -2.6986514
svar_irf_c_longer$irf[[2]][101,]

## dlrGDP UR
## -8.760994e-09 6.159035e+00
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Long Run Restrictions - Blanchard & Quah (1989)
mod_svar %>% fevd(n.ahead=40) %>% plot(addbars = 10)
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Long Run Restrictions - Other Examples

other examples of long-run neutrality where changes in nominal variables have no
effect on real economic variables in the long-run:
I permanent change in nominal money stock has no long-run effect on the

level of real output
I permanent change in the rate of inflation has no long-run effect on

unemployment (vertical Phillips curve)
I permanent change in the rate of inflation has no long-run effect on real

interest rates (long-run Fisher relationship).
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Sign Restrictions

I price puzzle: in a VAR with y t = (logGFPt , log pGDP
t , rt) after monetary

tightening prices go up which is completely counter intuitive according to
the standard transmission mechanism

I Sims (1992): (i) interest rate not the only instrument and (ii) prices appear
to rise because the VAR model does not include information about future
inflation that is available to Fed

I Uhlig (2005): study monetary policy shocks using restrictions which are
implied by several theoretical economic models - a contractionary monetary
policy shock does not
I reduce short term interest rate for x periods after the shock
I increase prices for x periods after the shock
I increase monetary aggregates (reserves) for x periods after the shock
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Sign Restrictions

I consider a simple VAR with GDP growth rate, inflation rate, and nominal
interest rate so that y t = (∆logGDPt ,∆ log pGDP

t ,FFt)′
library(Quandl)
Quandl.api_key('DLk9RQrfTVkD4UTKc7op')

rGDP <- Quandl("FRED/GDPC1", type="zoo")
pGDP <- Quandl("FRED/GDPDEF", type="zoo")
rFF <- Quandl("FRED/FEDFUNDS", collapse="quarterly", type="zoo")

lrGDP <- log(rGDP)*100
lpGDP <- log(pGDP)*100

y <- cbind(lrGDP, lpGDP, rFF)
vlabels <- c("log(GDP)","GDP deflator","FF rate")

y <- na.trim(y)
y <- window(y, end="2007 Q4")
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Sign Restrictions

I IRFs based on Choleski decomposition - increase in nominal interest rate is
associated with price increase in future
library(vars)
mod_var <- VAR(y, ic = "SC", lag.max = 16, type = "none")
svar_irf <- irf(mod_var, n.ahead = 40, ci = .9)

par(mfrow = c(3,3), cex = 0.6, mar = c(4,4,2,1))
plot(svar_irf, plot.type="single", ask = FALSE)
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Sign Restrictions

I IRF based on sign restriction that a contractionary monetary policy
increases nominal interest rate and decreases prices for at least 4 quarters

I sign restrictions are only weak restrictions on B0, in the SVAR model there
is a lot of uncertainty regarding the response of GDP to an increase in
nominal interest rate
library(VARsignR)
constr <- c(+3,-2)
mod_svar <- uhlig.reject(as.ts(y), nlags=2, constant=FALSE, steps=40, constrained=constr)

irfplot(mod_svar$IRFS, type="median", labels=vlabels)
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