Eco 5316 Time Series Econometrics
Lecture 18 Structural Vector Autoregression (SVAR) Models
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Motivation
> consider again the bivariate VAR(1) model for house price indices in Los
Angeles and Riverside MSAs with y. = (A log pj/, Alog pﬁ{t) and

Boy: = co+Biy,_;+e€:
> to estimate the model, we need to convert it into a reduced form VAR(1),
by premultiplying it with BO_1 to obtain
Ye=ctAy, ;+e:
where ¢ = By 'co, A1 = By 'B1, e = B 'ey, var(e:) = X = By 'EZ.B, Y

» the results

LA RI
LA(-1) 0.801*** 0.676***
(0.100) (0.138)
RI(-1) 0.044 0.260"*
(0.083) (0.114)
const 0.002 —0.002
(0.001) (0.002)
Observations 145 145
R? 0.729 0.648
Adjusted R? 0.726 0.643
Residual Std. Error (df = 142) 0.015 0.021
F Statistic (df = 2; 142) 191.454*** 130.770***
Note: *p<0.1; **p<0.05; ***p<0.01
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Motivation

> we can estimate any reduced form VAR(p) model
Y. =Awy, ;+.. '+APyt—p+et
easily using equation by equation OLS

» if we are only interested in forecasting the reduced form VAR(p) model is
all we need

» but to answer some other questions we need to know the coefficients of the
original structural VAR(p) model

Boy, = Biy, 1+...+Bpoy._,t+e&:
» unlike errors e; in the reduced form model, structural shocks &; are not
correlated, and have economic interpretation

> to construct impulse response functions (IRFs) and forecast error variance
decompositions (FEVDs), By is needed to obtain structural innovations
from reduced form VAR using ; = Boe:
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Reduced Form Errors vs Structural Shocks

note that

> IRFs trace out the response of y, to structural shocks €;, not reduced form
errors e;

» FEVD gives the fraction of variance of y, caused by different structural
shocks &¢, not reduced form errors e;

> since ; = Boe: to construct the IRFs and FEVD for a VAR(p) model we
need to know By, in addition to A,..., A,
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Identification of Structural Shocks

Q: Is it possible to recover co, {Bi}!_, and . from ¢, {Ai},_; and Z.?

A: Only if we are willing to impose additional restrictions.
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Identification of Structural Shocks

Example: bivariate VAR(1)

» reduced form VAR(1) yields estimates of 9 parameters in ¢, A;, X.
(yl,t) _ (C1)+(31,11 61,12) (,Vl,tfl)_’_(el,t) . — (Uf 0122)
Yot (=] ai,21 ai,22 y2,t—1 et J12 05
» we are trying to uncover cg, By, Bi, X which contain 10 unknown values
( 1 b0,12) (ym) _ (60,1)+<b1,11 b1,12> (yl,t—1)+<51,t) s — (‘731 0 )
boo1 1 Yot 0,2 b1o1 b122) \y2,t-1 €2t € 0 032

> one additional restriction on parameters thus needs to be imposed in the VAR(1)

> one possible way to do this is the Choleski decomposition

> impose bg,12 = 0 so that y; ; has contemporaneous effect on y» +, but y> ;

does not have a contemporaneous effect on y; ¢

P this also means that both €1,+ and €2+ have a contemporaneous effect on
Y2,¢, but only €1+ has an effect on y; ;

» this is how vars package constructs IRFs and FEVDs
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Identification of Structural Shocks

general case, a VAR(p) model with k variables

| g

vV v.v Vv

reduced form has k4 pk®4k(k+1)/2 parameters

structural form has k+(p+1)k*+k parameters

identification thus requires k(k—1)/2 additional restrictions

Choleski decomposition: set elements of By above main diagonal equal zero

ordering of variables in the VAR(p) model thus matters:

Yit is only affected by shocks €1, ..., €i¢, remaining shocks €it1e,. .., €kt
have no contemporaneous effect on y; . and will only affect y; ., for t' >t
indirectly through their effect on yji1,¢, ..., Yi,e
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Identification of Structural Shocks

» Choleski decomposition is one way to uncover By

» if Choleski decomposition is used, ordering of variables in VAR matters for
the IRFs and FEVDs

» the ordering however often does not have direct economic interpretation
and is ad hoc

» we will thus look at several alternative ways of introducing restrictions
consistent with some economic theory
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Choleski Decomposition Approach

» Choleski decomposition: for a positive definite matrix A there exist a lower
unitriangular matrix L and a diagonal matrix D such that A= LDL’

» since e; = Bpe; or equivalently e; = Bglet we have
/ —1 —17
Y. =Box.By 2. =B, X.B,

one particular way to obtain Bgl is thus to make use of Choleski
decomposition and set B;' = L
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Choleski Decomposition Approach

» if Choleski decomposition is used the elements of By above main diagonal
are equal zero, and ordering of variables in the VAR(p) model matters:

» ;¢ is directly affected only by shocks €1 ¢,..., €+
» shocks €j11,t, .., k,+ have no contemporaneous effect on y; ; and will only
affect y; ,+ for t' > t indirectly through their effect on yj 1 ¢,..., Ykt

» how much the order of variables matters, and how much the IRFs and FEVD
change depends on the magnitude of correlation among elements of e;

» for example, in a bivariate VAR(1)

» if corr(e1,t, e,+) = 0 then €+ = e+ so structural shocks are identical to
reduced form errors, and ordering does not matter at all

> if corr(e1,t, e,+) = 1 then there is actually only one structural shock and
whichever variable is first determines which structural error its going to be
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Choleski Decomposition Approach - Example
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Structural VARs

> structural vector autoregressive models (SVAR): explicit modeling of
contemporaneous interdependence between the left-hand side variables

» in some cases there might be a theoretical reason to expect that some
variable has no contemporaneous effect on another which would give some
guidance for ordering of variables

P> to some extent the ordering and resulting Choleski decomposition is ad hoc,
and often does not have direct economic interpretation

» it is also not practical to try all possible orderings, since there are k! of
them - with k = 4 that already means 24 different possibilities
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Structural VARs

» instead of using Choleski decomposition, in some cases it is possible to use
an economic theory to impose restrictions to achieve identification of
parameters of the structural VAR

» short run restrictions - restrictions on By which captures the
contemporaneous relationships of variables - zero (exclusion) restrictions e.g.
bo,12 = 0, symmetry restrictions e.g. bo,12—bo,21 = 0, other linear
restrictions e.g. bo1o+boo1 =1, ...

» long run restrictions - restrictions on By arise by dividing shocks into two
groups - those that have a permanent effect on some variables, and those
that have no permanent effects on any variable

» sign restrictions - restrictions on By which imply that IRF for some shock
has certain signs at certain horizons, e.g. “¢j; does not increase y; ; for s
periods”
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Short Run Restrictions

» note that Choleski decomposition is essentially a particular way to impose
short run restrictions that imposes a recursive structure

> example: if y, = (Ar, Alog p;, Alogy:)' the Choleski decomposition of X,
yields a lower diagonal matrix Bo so that in terms of short run restrictions
we have bia = b1z = baz = 0, this also implies the following ordering for

contemporaneous causality ry — pr — y:
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Short Run Restrictions

» consider a four variable macroeconomic model based on IS-LM framework
Yt — Ptal efas,t
Y, = e—az(rt—Alth Pt—eis,t)

M Y™

— e_Emd,t
Pt exart

M = M—4 et

where Y; is output, M; money, r: nominal interest rate, P; price level

» first equation thus describes the short run aggregate supply, second one IS
curve, third one LM curve, and the last one money supply

> let y, = (log Y, re, log P, log M), take a log of each equation, to obtain
log Y: = a1 log Pe+cas ¢
log Y: = —ao(ri—Alog Pr—eis,t)
log M: —log P: = azlog Yi—aur:—emd,:

|Og M; = |Og M;_1 +5ms,t
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Short Run Restrictions

» model thus implies following matrix summarizing contemporaneous links

1 0 bz 0
bpo1 1 -1 0

By =
0 bo3i bo3z2 1 —1
0 0 0 1
where by;13 = —a1, boo1 = 1/0w, b3zt = as, by = —as

» note that with four variables 6 restrictions are needed for exact
identification, since k(k—1)/2=6if k=4

» model is actually overidentified - it introduces two additional restrictions, by
restricting bp,23 = —1 and bp 3 = —1
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Overidentifying Restrictions

yNE Y Y

some theoretical models can suggest more than k(k—1)/2 restrictions
testing whether these overidentifying restrictions are consistent with data:

first, estimate reduced form VAR model, obtain X,

. since &; = Boe; and X. = By 'X.B; ", given the imposed restrictions use

maximum likelihood approach to choose remaining parameters of By and
¥ in order to maximize the likelihood function

-
T _ _ 1 -
— log|By ' E-By V|- Z}(Boet)’zs '(Boer)
t=
and let Xgp = BO_IZEBO_I' be the resulting restricted variance matrix
denote by R number of overidentifying restrictions i.e. number of
restrictions exceeding k(k—1)/2, then

[Zr| =X

has x? distribution with R degrees of freedom
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Overidentifying Restrictions Application - Enders and Holt (2013)
> four variable VAR: y, = (pe:, ext, re, pg:)’ where pe; is log of energy price
index deflated by the producer price index, ex; is real trade weighted
exchange rate of U.S. dollar, r: is 3-month T-bill rate adjusted for inflation,
pg: is log of price index of grain deflated by producer price index

> exact identification requires 6 restrictions: if k = 4 then k(k—1)/2 =16

» test whether system with 9 restrictions is consistent with data

1 0 00
0 1 00
Bo=149 0o 1 0

bo,a1 bo,a2 boaz 1

results in x? statistic of 13.53 with 3 degrees of freedom and p = 0.003, so
restrictions are strongly rejected by data

» strongly correlated residuals for exchange and interest rate equation suggest
using a modified system where real exchange rate is contemporaneously
affected by real interest rate shocks

1 0 00
_ | 0 1 bo2s0
Bo=19v 0o 1 0

bo,a1 bo,a2 boaz 1
which vields v? statistic of 4.57 with 2 degrees of freedom and p = 0.102, 18/40



Long Run Restrictions - Blanchard & Quah (1989)

>

in Blanchard and Quah, ¢; shocks are not considered as shocks directly
associated with y;, they instead assert that some shocks have permanent
effects and others only temporary effects on some variables

note: to use Blanchard and Quah technique, at least one variable must be
nonstationary, /(0) variables do not have a permanent component

consider a reduced form VAR A(L)y, = e; with vector moving average
representation

Y: = \U(L)Et = Z W@Etfg
=0

elements of the impulse-response function can be obtained from row i and
column j element of W,

Ve = OYr+e,i
i) ast,j
cumulative impact up to period ¢
¢ ¢
0
1/’2:‘1' = Z¢S,ij = 78&71- Zyt+$,i
s=0 s=0
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Long Run Restrictions - Blanchard & Quah (1989)

»

example: let y, = (Alog GDP;, UR;)’, with both variables demeaned, and
let €1,+ represent the technology shocks and e> ; the non-technology shocks

the moving average representation of the bivariate VAR is

yie| _ Wi (L) Wip(L)| |e1,e
Y2t Wzl(L) sz(L) €2t
and the equation for A log GDP; is thus

yi,e = Vii(L)er,e+Vio(L)er,: = Z¢£,11LZ€1,t+Z ¢Z,12L£52,t

£=0 £=0

long run constraint imposed: non-technology shocks only have a temporary
effect on the level of GDP and thus
. Olog GDP:4,
lim ————

=0
£— 00 852,5

equivalently, long run cumulative effect of non-technology shocks on the
growth rate of GDP so on Alog GDP; is zero, W1(1) =0

O AlogGDPs
Jm, Oea,t = fim, ZO Vo2 =0
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Long Run Restrictions - Blanchard & Quah (1989)

» to get more insight how the Blanchard-Quah approach works consider a
structural VAR(1)

Boy, = B1y,_;+e: where var(e:) = X,
» we can normalize ¥. = I i.e. obtain aﬁ,. =1 if we divide each equation by
0¢;; this changes the diagonal elements of By from 1 into 1/,

» the associated reduced form VAR(1) is
y.=Ay, ,+e:

where A; = B;'B; and e; = B 'e; and var(e;) = Y. = By 'Y.By "

» estimating reduced form VAR yields A; and X., the identification problem is
then to use these to recover parameters of structural VAR, By, B:1 and X,

» since A; = Bo’lBl once we know By we can use A; to obtain B using
B; = BoA;

» the main task is thus to determine the four elements of By since we have
normalized X. =/
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Long Run Restrictions - Blanchard & Quah (1989)

consider a bivariate VAR(1) and denote the elements of By and B, as follows
B, — bo,11 bo,12 B! — 1 bo,22 —bo,12 _ 1:70,11 1:70,12
0 bo,21 bo,22 0 bo,11b0,22— bo,21b0,12 | —bo21  bo11 bo,21 bo,22
so that equation ¥ = By 'E.B; " yields with normalization 02, = 02, = 1
o1 o1 _ gJo,n l}o,u 10 1:30,11 §0,21
o1 03 boo1 bo22| |0 1| |bo12 bo22

2 g2 72
01 = by11+bp 12

or equivalently

012 = bo,11b0,21+ bo,12 b0 22

012 = bo,11b0,21+ bo,12bo 22
2 72 72

05 = b o1+ b5 22

so we only have 3 independent equations but 4 unknowns
{bo,11, bo,12, bo,21, bo,22 }

in order to get 4 equations in 4 unknowns {50,11, Po.12, bo 21, 50,22} we next

impose one long run restriction
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Long Run Restrictions - Blanchard & Quah (1989)
» from the reduced form VAR by repeated substitution we have

Y, =e:+Ae_; +A%e o+...= Afet,£ = Z AfLZet
=0 =0

and using e; = Bo_lst we get the vector moving average representation

¥, = Bylei+ALB; e+ APBy e+ .. = (ZAW) B;le:
£=0
> let -
DAL = (I+ AL+ AL+ ) = (1-AlL)
£=0
then

ye=(-AL) "By
> note that this condition can be also obtained from the reduced form VAR(1)
by rearranging it first as (I—A;L)y, = e; from which
y. = (I-A:L) By e,
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Long Run Restrictions - Blanchard & Quah (1989)

» thus let S be the matrix of long run cumulative effects of € on y given by
S=(I+A+Al+...)B; ' = (I-A) " 'B;*
» in a bivariate framework, Blanchard and Quah impose a constraint that

second shock has no cumulative long run effect on first variable, which
means that S;2 =0

> if we denote the elements of matrix (I—A;)"" as

(A~ = Fu 512}

a1 axn
the system of 4 equations in 4 unknowns {50711, 50712, 50,21, 50,22} becomes
oy = BS,II+E§,12
012 = 50,1150,21+Eo,12f~70,22
oy = 55,214‘133,22
0= 5115042-!-521730,22
where the last condition corresponds to S12 = 0

> this system can be easily solved given parameters {0, o3, 012, 311, 321}
(which come from X. and A;)

24 /40



Long Run Restrictions - Blanchard & Quah (1989)

# obtain data on real GDP and unemployment rate
# construct approzimate quarter-over-quarter GDP growth rates
y_tbl <- inner_join(tq_get("GDPC1", get = "economic.data",
from = "1947-01-01", to = "2018-12-31") %>%
rename (rGDP = price) %>%
mutate (d1rGDP = 100*(log(rGDP) - lag(log(rGDP)))),
tq_get ("UNRATE", get = "economic.data",
from = "1947-01-01", to = "2018-12-31") %>%
rename (UR = price) %>%
tq_transmute(select = UR, mutate_fun = to.quarterly) %>%
mutate(date = as.Date(date)),
by = "date") %>
mutate(yearq = as.yearqtr(date)) %>%
dplyr::select(yearq, dlrGDP, UR)

# Blanchard and Quah use 195002 to 1987Q4 as sample, and demean the data
y_xts <- y_tbl %>%
filter(yearq >= "1950 Q2", yearq <= "1987 Q4") %>%
mutate_at(vars(dlrGDP,UR), funs(. - mean(.))) %>%
tk_xts(select= c("dlrGDP","UR"), date_var = yearq)
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Long Run Restrictions - Blanchard & Quah (1989)

# estimate reduced form VAR

mod_var <- VAR(y_xts, ic = "SC", lag.max = 8)

# Blanchard-Quah long run restriction: row 1 column 2 element of the cumulative effect matriz is O

mod_svar <- BQ(mod_var)
summary (mod_svar)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

SVAR Estimation Results:
Call:
BQ(x = mod_var)

Type: Blanchard-Quah
Sample size: 149
Log Likelihood: -232.816

Estimated contemporaneous impact matrix:

d1rGDP UR
dlrGDP 0.79328 -0.5393
UR -0.03914 0.3787

Estimated identified long run impact matrix:

d1rGDP UR
dlrGDP 0.5734 0.000
UR -2.6987 6.159

Covariance matrix of reduced form residuals (*100):

d1rGDP UR
dlrGDP 92.01 -23.53
UR -23.53 14.50
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Long Run Restrictions - Blanchard & Quah (1989)

» in the output on the previous slide the contemporaneous impact matrix
reported is Bo_l, it shows the immediate effect of ¢;; on y;: upon impact

#i#t
## Estimated contemporaneous impact matrix:

## d1rGDP UR
## dlrGDP 0.79328 -0.5393
## UR -0.03914 0.3787

> rows refer to two variables (A log GDP;, UR:), and the columns to the two
shocks - technology shock €1,; and non-technology shock &> ;

» here on impact a positive one standard deviation technology shock increases
GDP by 0.793% and lowers unemployment rate by 0.0391 percentage points

> a negative one standard deviation non-technology shock lowers GDP on
impact by 0.539%, increases unemployment rate by 0.378 percentage points
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Long Run Restrictions - Blanchard & Quah (1989)

» the long run impact matrix reported shows the cumulative long run impact
. ¢
|Im¢*>oo ZS:O lps,,’j =0

##
## Estimated identified long run impact matrix:

## d1rGDP UR
## dlrGDP 0.5734 0.000
## UR -2.6987 6.159

» the long run cumulative effect of any non-technology shock on GDP is 0
(this is the long run constraint we imposed)

» the long run cumulative effect of a single positive one standard deviation
technology shocks on GDP is to increase it by 0.576%
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Long Run Restrictions - Blanchard & Quah (1989)

# standard non-cumulative IRFs

svar_irf <- irf(mod_svar, n.ahead = 40, ci = .9)
# cumulative svar_irfs
svar_irf_c <- irf(mod_svar, n.ahead = 40, ci = .9, cumulative = TRUE)

# arrange IRF data into a tibble to be used with ggplot
svar_irf_tbl <-
bind_rows(# standard IRFs for UR
svar_irf %>/
keep(names(.) %in% c("irf", "Lower", "Upper")) %>%
modify_depth(2, as_tibble) %>
modify_depth(1, bind_rows, .id = "impulse") %>%
map_df (bind_rows, .id = "key") %>%
dplyr: :select(-d1rGDP) 7%>%
gather(response, value, -key, -impulse),
# cumulative IRFs for GDP
svar_irf_c %>
keep(names(.) %in% c("irf", "Lower", "Upper")) %>%
modify_depth(2, as_tibble) %>%
modify_depth(1l, bind_rows, .id = "impulse") %>%
map_df (bind_rows, .id = "key") %>%
dplyr::select(-UR) %>%
gather (response, value, -key, -impulse)) %>%
group_by(key, impulse, response) %>%
mutate(lag = row_number()) %>%
ungroup() %>%
# change signs for the mon-techmnology shock IRFs so that they show effects of a positive shock
mutate(value = if_else(impulse == "UR", -value, value)) %>%
spread(key, value)
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Long Run Restrictions - Blanchard & Quah (1989)

# plot IRFs using ggplot
svar_irf_tbl %>%

mutate(impulse_label = case_when(impulse == "d1rGDP" ~ 1,
impulse == "UR" ~2) W%
factor(labels = c("technology shock", "non-technology shock")),
response_label = case_when(response == "d1rGDP" ~ "log(GDP)",
response == "UR" ~ "Unemployment Rate") ) %>%

ggplot(aes(x = lag, y = irf)) +
geom_ribbon(aes(x = lag, ymin = Lower, ymax = Upper), fill = "gray50", alpha = .3) +
geom_line() +
geom_hline(yintercept = 0, linetype = "dashed") +
labs(x = "", y = "", title = "SVAR Impulse Response Functions") +
facet_grid(response_label ~ impulse_label, switch = "y", scales = "free_y")
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Long Run Restrictions - Blanchard & Quah (1989)
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Long Run Restrictions - Blanchard & Quah (1989)

» the peak effect for both shocks occurs 3 quarters after the shock hits the
economy

» in case of a positive one standard deviation shock to technology, at the
peak GDP increases by about 1% and unemployment rate falls by roughly
0.25 percentage points

» in case of a positive one standard deviation non-technology shock, at the
peak GDP increases by about 1% and unemployment rate falls by roughly
0.57 percentage points
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Long Run Restrictions - Blanchard & Quah (1989)

# construct longer cumulative IRFs, and keep non-technology shocks as negative one
svar_irf_c_longer <- irf(mod_svar, n.ahead = 100, cumulative = TRUE, boot = FALSE)

note that by construction the contemporaneous impact matrix from
summary (mod_svar)

##

## Estimated contemporaneous impact matrix:
## d1rGDP UR

## dlrGDP 0.79328 -0.5393

## UR -0.03914 0.3787

is identical to the elements of the IRFs for period 0 (impact period)
svar_irf_c_longer$irf[[1]]1[1,]

## d1rGDP UR
## 0.79328160 -0.03914466
svar_irf_c_longer$irf [[2]]1[1,]

## d1rGDP UR
## -0.5392647 0.3787316
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Long Run Restrictions - Blanchard & Quah (1989)

also note that the long run impact matrix from summary(mod_svar)

##

## Estimated identified long run impact matrix:
## d1rGDP UR

## dlrGDP 0.5734 0.000

## UR -2.6987 6.159

s essentially the same as the elements of the IRFs for period 100
svar_irf_c_longer$irf[[1]][101,]

## d1rGDP UR
## 0.5733992 -2.6986514
svar_irf_c_longer$irf [[2]][101,]

## d1rGDP UR
## -8.760994e-09 6.159035e+00
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Long Run Restrictions - Blanchard & Quah (1989)

mod_svar %>’ fevd(n.ahead=40) %>’ plot(addbars = 10)
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Long Run Restrictions - Other Examples

other examples of long-run neutrality where changes in nominal variables have no
effect on real economic variables in the long-run:

» permanent change in nominal money stock has no long-run effect on the
level of real output

» permanent change in the rate of inflation has no long-run effect on
unemployment (vertical Phillips curve)

» permanent change in the rate of inflation has no long-run effect on real
interest rates (long-run Fisher relationship).
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Sign Restrictions

> price puzzle: in a VAR with y, = (log GFP:, log pF°, r;) after monetary

tightening prices go up which is completely counter intuitive according to
the standard transmission mechanism

> Sims (1992): (i) interest rate not the only instrument and (ii) prices appear
to rise because the VAR model does not include information about future
inflation that is available to Fed

> Uhlig (2005): study monetary policy shocks using restrictions which are
implied by several theoretical economic models - a contractionary monetary
policy shock does not

» reduce short term interest rate for x periods after the shock
» increase prices for x periods after the shock
> increase monetary aggregates (reserves) for x periods after the shock
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Sign Restrictions

» consider a simple VAR with GDP growth rate, inflation rate, and nominal
interest rate so that y, = (AlogGDP:, Alog pePf | FF:)
library(Quandl)
Quandl.api_key('DLk9RQrfTVkD4UTKc7op')

rGDP <- Quandl("FRED/GDPC1", type="zoo")
pGDP <- Quandl("FRED/GDPDEF", type="zoo")
rFF <- Quandl("FRED/FEDFUNDS", collapse="quarterly", type="zoo"

1rGDP <- log(rGDP)*100
1pGDP <- log(pGDP)*100

y <- cbind(1rGDP, 1pGDP, rFF)
vlabels <- c("log(GDP)","GDP deflator","FF rate")

y <- na.trim(y)
y <- window(y, end="2007 Q4")
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Sign Restrictions

>

IRFs based on Choleski decomposition - increase in nominal interest rate is
associated with price increase in future

library(vars)
mod_var <- VAR(y, ic "SC", lag.max = 16, type = "none")
svar_irf <- irf(mod_var, n.ahead = 40, ci = .9)

par(mfrow = c(3,3), cex = 0.6, mar = c(4,4,2,1))
plot(svar_irf, plot.type="single", ask = FALSE)
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Sign Restrictions

>

>

IRF based on sign restriction that a contractionary monetary policy
increases nominal interest rate and decreases prices for at least 4 quarters

sign restrictions are only weak restrictions on By, in the SVAR model there
is a lot of uncertainty regarding the response of GDP to an increase in

nominal interest rate

library(VARsignR)

constr <- c(+3,-2)

mod_svar <- uhlig.reject(as.ts(y), nlags=2, constant=FALSE, steps=40, constrained=constr)

irfplot(mod_svar$IRFS, type="median", labels=vlabels)

40 /40



