Eco 5316 Time Series Econometrics Lecture 18 Structural Vector Autoregression (SVAR) Models

Motivation

• consider again the bivariate VAR(1) model for house price indices in Los Angeles and Riverside MSAs with $\mathbf{y}_t = (\Delta \log p_{H,t}^{LA}, \Delta \log p_{H,t}^{RI})$ and

$$\boldsymbol{B}_{0} \boldsymbol{\mathsf{y}}_{t} = \boldsymbol{c}_{0} + \boldsymbol{B}_{1} \boldsymbol{y}_{t-1} + \boldsymbol{\varepsilon}_{t}$$

▶ to estimate the model, we need to convert it into a reduced form VAR(1), by premultiplying it with B_0^{-1} to obtain

$$\boldsymbol{y}_t = \boldsymbol{c} + \boldsymbol{A}_1 \boldsymbol{y}_{t-1} + \boldsymbol{e}_t$$

where $c = B_0^{-1} c_0$, $A_1 = B_0^{-1} B_1$, $e_t = B_0^{-1} \varepsilon_t$, $var(e_t) = \Sigma_e = B_0^{-1} \Sigma_\varepsilon B_0^{-1/2}$

the results

	LA	RI
LA(-1)	0.801***	0.676***
	(0.100)	(0.138)
RI(-1)	0.044	0.260**
	(0.083)	(0.114)
const	0.002	-0.002
	(0.001)	(0.002)
Observations	145	145
R ²	0.729	0.648
Adjusted R ²	0.726	0.643
Residual Std. Error (df = 142)	0.015	0.021
F Statistic (df = 2; 142)	191.454***	130.770***
Note:	*p<0.1; **p<0.05; ***p<0.01	

Motivation

we can estimate any reduced form VAR(p) model

$$\boldsymbol{y}_t = \boldsymbol{A}_1 \boldsymbol{y}_{t-1} + \ldots + \boldsymbol{A}_{\rho} \boldsymbol{y}_{t-\rho} + \boldsymbol{e}_t$$

easily using equation by equation OLS

- if we are only interested in forecasting the reduced form VAR(p) model is all we need
- but to answer some other questions we need to know the coefficients of the original structural VAR(p) model

$$\boldsymbol{B}_0 \boldsymbol{y}_t = \boldsymbol{B}_1 \boldsymbol{y}_{t-1} + \ldots + \boldsymbol{B}_p \boldsymbol{y}_{t-p} + \boldsymbol{\varepsilon}_t$$

- unlike errors e_t in the reduced form model, structural shocks ε_t are not correlated, and have economic interpretation
- to construct impulse response functions (IRFs) and forecast error variance decompositions (FEVDs), B₀ is needed to obtain structural innovations from reduced form VAR using ε_t = B₀e_t

Reduced Form Errors vs Structural Shocks

note that

- ▶ IRFs trace out the response of y_t to structural shocks ε_t , not reduced form errors e_t
- FEVD gives the fraction of variance of y_t caused by different structural shocks e_t, not reduced form errors e_t
- ▶ since $\varepsilon_t = B_0 e_t$ to construct the IRFs and FEVD for a VAR(*p*) model we need to know B_0 , in addition to A_1, \ldots, A_p

Q: Is it possible to recover c_0 , $\{B_i\}_{i=0}^p$ and Σ_{ε} from c, $\{A_i\}_{i=1}^p$ and Σ_e ? A: Only if we are willing to impose additional restrictions.

Identification of Structural Shocks

Example: bivariate VAR(1)

reduced form VAR(1) yields estimates of 9 parameters in c, A_1 , $Σ_e$

$$\begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} a_{1,11} & a_{1,12} \\ a_{1,21} & a_{1,22} \end{pmatrix} \begin{pmatrix} y_{1,t-1} \\ y_{2,t-1} \end{pmatrix} + \begin{pmatrix} e_{1,t} \\ e_{2,t} \end{pmatrix} \quad \mathbf{\Sigma}_e = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}$$

• we are trying to uncover c_0 , B_0 , B_1 , Σ_{ε} which contain 10 unknown values

$$\begin{pmatrix} 1 & b_{0,12} \\ b_{0,21} & 1 \end{pmatrix} \begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix} = \begin{pmatrix} c_{0,1} \\ c_{0,2} \end{pmatrix} + \begin{pmatrix} b_{1,11} & b_{1,12} \\ b_{1,21} & b_{1,22} \end{pmatrix} \begin{pmatrix} y_{1,t-1} \\ y_{2,t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{pmatrix} \quad \mathbf{\Sigma}_{\epsilon} = \begin{pmatrix} \sigma_{\varepsilon_1}^2 & 0 \\ 0 & \sigma_{\varepsilon_2}^2 \end{pmatrix}$$

- one additional restriction on parameters thus needs to be imposed in the VAR(1)
- one possible way to do this is the Choleski decomposition
 - impose b_{0,12} = 0 so that y_{1,t} has contemporaneous effect on y_{2,t}, but y_{2,t} does not have a contemporaneous effect on y_{1,t}
 - this also means that both $\varepsilon_{1,t}$ and $\varepsilon_{2,t}$ have a contemporaneous effect on $y_{2,t}$, but only $\varepsilon_{1,t}$ has an effect on $y_{1,t}$
 - this is how vars package constructs IRFs and FEVDs

Identification of Structural Shocks

general case, a VAR(p) model with k variables

- reduced form has $k + pk^2 + k(k+1)/2$ parameters
- structural form has $k+(p+1)k^2+k$ parameters
- identification thus requires k(k-1)/2 additional restrictions
- ▶ Choleski decomposition: set elements of **B**₀ above main diagonal equal zero
- ordering of variables in the VAR(p) model thus matters: $y_{i,t}$ is only affected by shocks $\varepsilon_{1,t}, \ldots, \varepsilon_{i,t}$, remaining shocks $\varepsilon_{i+1,t}, \ldots, \varepsilon_{k,t}$ have no contemporaneous effect on $y_{i,t}$ and will only affect $y_{i,t'}$ for t' > tindirectly through their effect on $y_{i+1,t}, \ldots, y_{k,t}$

Identification of Structural Shocks

- Choleski decomposition is one way to uncover B₀
- if Choleski decomposition is used, ordering of variables in VAR matters for the IRFs and FEVDs
- the ordering however often does not have direct economic interpretation and is ad hoc
- we will thus look at several alternative ways of introducing restrictions consistent with some economic theory

Choleski Decomposition Approach

Choleski decomposition: for a positive definite matrix A there exist a lower unitriangular matrix L and a diagonal matrix D such that A = LDL'

• since $\varepsilon_t = B_0 e_t$ or equivalently $e_t = B_0^{-1} \varepsilon_t$ we have

$$\mathbf{\Sigma}_{\varepsilon} = \mathbf{B}_0 \mathbf{\Sigma}_e \mathbf{B}_0' \qquad \mathbf{\Sigma}_e = \mathbf{B}_0^{-1} \mathbf{\Sigma}_{\varepsilon} \mathbf{B}_0^{-1'}$$

one particular way to obtain B_0^{-1} is thus to make use of Choleski decomposition and set $B_0^{-1} = L$

Choleski Decomposition Approach

if Choleski decomposition is used the elements of B₀ above main diagonal are equal zero, and ordering of variables in the VAR(p) model matters:

- $y_{i,t}$ is directly affected only by shocks $\varepsilon_{1,t}, \ldots, \varepsilon_{i,t}$
- ▶ shocks $\varepsilon_{i+1,t}, \ldots, \varepsilon_{k,t}$ have no contemporaneous effect on $y_{i,t}$ and will only affect $y_{i,t'}$ for t' > t indirectly through their effect on $y_{i+1,t}, \ldots, y_{k,t}$
- how much the order of variables matters, and how much the IRFs and FEVD change depends on the magnitude of correlation among elements of e_t

▶ for example, in a bivariate VAR(1)

- if corr(e_{1,t}, e_{2,t}) = 0 then ε_{i,t} = e_{i,t} so structural shocks are identical to reduced form errors, and ordering does not matter at all
- if corr(e_{1,t}, e_{2,t}) = 1 then there is actually only one structural shock and whichever variable is first determines which structural error its going to be

Choleski Decomposition Approach - Example

 $\mathbf{y}_{t} = (\Delta \log p_{H_{t}}^{LA}, \Delta \log p_{H_{t}}^{RI})'$

 $\mathbf{y}_{t} = (\Delta \log p_{H_{t}}^{RI}, \Delta \log p_{H_{t}}^{LA})'$

Structural VARs

- structural vector autoregressive models (SVAR): explicit modeling of contemporaneous interdependence between the left-hand side variables
- in some cases there might be a theoretical reason to expect that some variable has no contemporaneous effect on another which would give some guidance for ordering of variables
- to some extent the ordering and resulting Choleski decomposition is ad hoc, and often does not have direct economic interpretation
- it is also not practical to try all possible orderings, since there are k! of them - with k = 4 that already means 24 different possibilities

Structural VARs

- instead of using Choleski decomposition, in some cases it is possible to use an economic theory to impose restrictions to achieve identification of parameters of the structural VAR
- short run restrictions restrictions on B₀ which captures the contemporaneous relationships of variables zero (exclusion) restrictions e.g. b_{0,12} = 0, symmetry restrictions e.g. b_{0,12}-b_{0,21} = 0, other linear restrictions e.g. b_{0,12}+b_{0,21} = 1, ...
- long run restrictions restrictions on B₀ arise by dividing shocks into two groups - those that have a permanent effect on some variables, and those that have no permanent effects on any variable
- sign restrictions restrictions on B₀ which imply that IRF for some shock has certain signs at certain horizons, e.g. "ε_{j,t} does not increase y_{i,t} for s periods"

- note that Choleski decomposition is essentially a particular way to impose short run restrictions that imposes a recursive structure
- example: if y_t = (Δr_t, Δ log p_t, Δ log y_t)' the Choleski decomposition of Σ_e yields a lower diagonal matrix B₀ so that in terms of short run restrictions we have b₁₂ = b₁₃ = b₂₃ = 0, this also implies the following ordering for contemporaneous causality r_t → p_t → y_t

Short Run Restrictions

consider a four variable macroeconomic model based on IS-LM framework

$$Y_{t} = P_{t}^{\alpha_{1}} e^{\varepsilon_{as,t}}$$

$$Y_{t} = e^{-\alpha_{2}(r_{t} - \Delta \log P_{t} - \varepsilon_{is,t})}$$

$$\frac{M_{t}}{P_{t}} = \frac{Y_{t}^{\alpha_{3}}}{e^{\alpha_{4}r_{t}}} e^{-\varepsilon_{md,t}}$$

$$M_{t} = M_{t-1} e^{\varepsilon_{ms,t}}$$

where Y_t is output, M_t money, r_t nominal interest rate, P_t price level

- first equation thus describes the short run aggregate supply, second one IS curve, third one LM curve, and the last one money supply
- ▶ let $\mathbf{y}_t = (\log Y_t, r_t, \log P_t, \log M_t)'$, take a log of each equation, to obtain

$$\log Y_t = \alpha_1 \log P_t + \varepsilon_{as,t}$$
$$\log Y_t = -\alpha_2 (r_t - \Delta \log P_t - \varepsilon_{is,t})$$
$$\log M_t - \log P_t = \alpha_3 \log Y_t - \alpha_4 r_t - \varepsilon_{md,t}$$
$$\log M_t = \log M_{t-1} + \varepsilon_{ms,t}$$

Short Run Restrictions

model thus implies following matrix summarizing contemporaneous links

$$oldsymbol{B}_0 = egin{bmatrix} 1 & 0 & b_{0,13} & 0 \ b_{0,21} & 1 & -1 & 0 \ b_{0,31} & b_{0,32} & 1 & -1 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

where $b_{0,13}=-lpha_1$, $b_{0,21}=1/lpha_2$, $b_{0,31}=lpha_3$, $b_{0,32}=-lpha_4$

- ▶ note that with four variables 6 restrictions are needed for exact identification, since k(k-1)/2 = 6 if k = 4
- ▶ model is actually *overidentified* it introduces two additional restrictions, by restricting $b_{0,23} = -1$ and $b_{0,34} = -1$

Overidentifying Restrictions

- ▶ some theoretical models can suggest more than k(k-1)/2 restrictions
- testing whether these overidentifying restrictions are consistent with data:
- 1. first, estimate reduced form VAR model, obtain Σ_e
- 2. since $\varepsilon_t = B_0 e_t$ and $\Sigma_e = B_0^{-1} \Sigma_{\varepsilon} B_0^{-1'}$, given the imposed restrictions use maximum likelihood approach to choose remaining parameters of B_0 and Σ_{ε} in order to maximize the likelihood function

$$-\frac{T}{2} \log |\boldsymbol{B}_0^{-1} \boldsymbol{\Sigma}_{\varepsilon} \boldsymbol{B}_0^{-1\prime}| - \frac{1}{2} \sum_{t=1}^{T} (\boldsymbol{B}_0 \boldsymbol{e}_t)' \boldsymbol{\Sigma}_{\varepsilon}^{-1} (\boldsymbol{B}_0 \boldsymbol{e}_t)$$

and let $\Sigma_R = B_0^{-1} \Sigma_{\varepsilon} B_0^{-1}$ be the resulting restricted variance matrix 3. denote by R number of overidentifying restrictions i.e. number of restrictions exceeding k(k-1)/2, then

$$|\mathbf{\Sigma}_{R}| - |\mathbf{\Sigma}_{e}|$$

has χ^2 distribution with *R* degrees of freedom

Overidentifying Restrictions Application - Enders and Holt (2013)

- four variable VAR: y_t = (pet, ext, rt, pgt)' where pet is log of energy price index deflated by the producer price index, ext is real trade weighted exchange rate of U.S. dollar, rt is 3-month T-bill rate adjusted for inflation, pgt is log of price index of grain deflated by producer price index
- exact identification requires 6 restrictions: if k = 4 then k(k-1)/2 = 6
- test whether system with 9 restrictions is consistent with data

$$oldsymbol{B}_0 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ b_{0,41} & b_{0,42} & b_{0,43} & 1 \end{bmatrix}$$

results in χ^2 statistic of 13.53 with 3 degrees of freedom and p= 0.003, so restrictions are strongly rejected by data

strongly correlated residuals for exchange and interest rate equation suggest using a modified system where real exchange rate is contemporaneously affected by real interest rate shocks

$$oldsymbol{B}_0 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & b_{0,23} & 0 \ 0 & 0 & 1 & 0 \ b_{0,41} & b_{0,42} & b_{0,43} & 1 \end{bmatrix}$$

which yields χ^2 statistic of 4.57 with 2 degrees of freedom and p = 0.102, ^{18/40}

- In Blanchard and Quah, ε_i shocks are not considered as shocks directly associated with y_i, they instead assert that some shocks have permanent effects and others only temporary effects on some variables
- note: to use Blanchard and Quah technique, at least one variable must be nonstationary, I(0) variables do not have a permanent component
- ▶ consider a reduced form VAR $\boldsymbol{A}(L)\boldsymbol{y}_t = \boldsymbol{e}_t$ with vector moving average representation

$$\boldsymbol{y}_t = \boldsymbol{\Psi}(L) \boldsymbol{\varepsilon}_t = \sum_{\ell=0}^{\infty} \boldsymbol{\Psi}_\ell \boldsymbol{\varepsilon}_{t-\ell}$$

 \blacktriangleright elements of the impulse-response function can be obtained from row i and column j element of Ψ_ℓ

$$\psi_{\ell,ij} = rac{\partial y_{t+\ell,i}}{\partial arepsilon_{t,j}}$$

• cumulative impact up to period ℓ

$$\psi_{\ell,ij}^* = \sum_{s=0}^{\ell} \psi_{s,ij} = \frac{\partial}{\partial \varepsilon_{t,j}} \sum_{s=0}^{\ell} y_{t+s,i}$$

• example: let $\mathbf{y}_t = (\Delta \log GDP_t, UR_t)'$, with both variables demeaned, and let $\varepsilon_{1,t}$ represent the technology shocks and $\varepsilon_{2,t}$ the non-technology shocks

the moving average representation of the bivariate VAR is

$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} = \begin{bmatrix} \Psi_{11}(L) & \Psi_{12}(L) \\ \Psi_{21}(L) & \Psi_{22}(L) \end{bmatrix} \begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{bmatrix}$$

and the equation for $\Delta \log GDP_t$ is thus

$$y_{1,t} = \Psi_{11}(L)\varepsilon_{1,t} + \Psi_{12}(L)\varepsilon_{2,t} = \sum_{\ell=0}^{\infty} \psi_{\ell,11}L^{\ell}\varepsilon_{1,t} + \sum_{\ell=0}^{\infty} \psi_{\ell,12}L^{\ell}\varepsilon_{2,t}$$

long run constraint imposed: non-technology shocks only have a temporary effect on the *level* of GDP and thus

$$\lim_{\ell \to \infty} \frac{\partial \log GDP_{t+\ell}}{\partial \varepsilon_{2,t}} = 0$$

equivalently, long run cumulative effect of non-technology shocks on the growth rate of GDP so on Δ log GDP_t is zero, Ψ₁₂(1) = 0

$$\lim_{\ell \to \infty} \frac{\partial \sum_{s=0}^{\ell} \Delta \log GDP_{t+s}}{\partial \varepsilon_{2,t}} = \lim_{\ell \to \infty} \sum_{s=0}^{\ell} \psi_{s,12} = 0$$

to get more insight how the Blanchard-Quah approach works consider a structural VAR(1)

$$oldsymbol{B}_0oldsymbol{y}_t = oldsymbol{B}_1oldsymbol{y}_{t-1}\!+\!arepsilon_t$$
 where $var(arepsilon_t) = \Sigma_arepsilon$

• we can normalize $\Sigma_{\varepsilon} = I$ i.e. obtain $\sigma_{\varepsilon_i}^2 = 1$ if we divide each equation by σ_{ε_i} ; this changes the diagonal elements of B_0 from 1 into $1/\sigma_{\varepsilon_i}$

the associated reduced form VAR(1) is

$$\boldsymbol{y}_t = \boldsymbol{A}_1 \boldsymbol{y}_{t-1} + \boldsymbol{e}_t$$

where $\mathbf{A}_1 = \mathbf{B}_0^{-1} \mathbf{B}_1$ and $\mathbf{e}_t = \mathbf{B}_0^{-1} \varepsilon_t$ and $var(\mathbf{e}_t) = \Sigma_e = \mathbf{B}_0^{-1} \Sigma_\varepsilon \mathbf{B}_0^{-1}$

- estimating reduced form VAR yields A₁ and Σ_e, the identification problem is then to use these to recover parameters of structural VAR, B₀, B₁ and Σ_e
- since $A_1 = B_0^{-1}B_1$ once we know B_0 we can use A_1 to obtain B_1 using $B_1 = B_0A_1$
- the main task is thus to determine the four elements of B_0 since we have normalized $\Sigma_{\varepsilon} = I$

consider a bivariate VAR(1) and denote the elements of B_0 and B_0^{-1} as follows

$$\boldsymbol{B}_{0} = \begin{bmatrix} b_{0,11} & b_{0,12} \\ b_{0,21} & b_{0,22} \end{bmatrix} \quad \boldsymbol{B}_{0}^{-1} = \frac{1}{b_{0,11}b_{0,22} - b_{0,21}b_{0,12}} \begin{bmatrix} b_{0,22} & -b_{0,12} \\ -b_{0,21} & b_{0,11} \end{bmatrix} = \begin{bmatrix} \tilde{b}_{0,11} & \tilde{b}_{0,12} \\ \tilde{b}_{0,21} & \tilde{b}_{0,22} \end{bmatrix}$$

so that equation $\Sigma_e = {\pmb B}_0^{-1} \Sigma_\varepsilon {\pmb B}_0^{-1\prime}$ yields with normalization $\sigma_{\varepsilon_1}^2 = \sigma_{\varepsilon_2}^2 = 1$

$$\begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix} = \begin{bmatrix} \tilde{b}_{0,11} & \tilde{b}_{0,12} \\ \tilde{b}_{0,21} & \tilde{b}_{0,22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \tilde{b}_{0,11} & \tilde{b}_{0,21} \\ \tilde{b}_{0,12} & \tilde{b}_{0,22} \end{bmatrix}$$

or equivalently

$$\begin{split} \sigma_1^2 &= \tilde{b}_{0,11}^2 + \tilde{b}_{0,12}^2 \\ \sigma_{12} &= \tilde{b}_{0,11} \tilde{b}_{0,21} + \tilde{b}_{0,12} \tilde{b}_{0,22} \\ \sigma_{12} &= \tilde{b}_{0,11} \tilde{b}_{0,21} + \tilde{b}_{0,12} \tilde{b}_{0,22} \\ \sigma_2^2 &= \tilde{b}_{0,21}^2 + \tilde{b}_{0,22}^2 \end{split}$$

so we only have 3 independent equations but 4 unknowns $\{\tilde{b}_{0,11},\tilde{b}_{0,12},\tilde{b}_{0,21},\tilde{b}_{0,22}\}$

in order to get 4 equations in 4 unknowns $\{\tilde{b}_{0,11},\tilde{b}_{0,12},\tilde{b}_{0,21},\tilde{b}_{0,22}\}$ we next impose one long run restriction

from the reduced form VAR by repeated substitution we have

$$\boldsymbol{y}_t = \boldsymbol{e}_t + \boldsymbol{A}_1 \boldsymbol{e}_{t-1} + \boldsymbol{A}_1^2 \boldsymbol{e}_{t-2} + \ldots = \sum_{\ell=0}^{\infty} \boldsymbol{A}_1^{\ell} \boldsymbol{e}_{t-\ell} = \sum_{\ell=0}^{\infty} \boldsymbol{A}_1^{\ell} \boldsymbol{L}^{\ell} \boldsymbol{e}_t$$

and using $oldsymbol{e}_t = oldsymbol{B}_0^{-1} arepsilon_t$ we get the vector moving average representation

$$\boldsymbol{y}_t = \boldsymbol{B}_0^{-1} \boldsymbol{\varepsilon}_t + \boldsymbol{A}_1 L \boldsymbol{B}_0^{-1} \boldsymbol{\varepsilon}_t + \boldsymbol{A}_1^2 L^2 \boldsymbol{B}_0^{-1} \boldsymbol{\varepsilon}_t + \ldots = \Big(\sum_{\ell=0}^{\infty} \boldsymbol{A}_1^{\ell} L^{\ell}\Big) \boldsymbol{B}_0^{-1} \boldsymbol{\varepsilon}_t$$

let

$$\sum_{\ell=0}^{\infty} \mathbf{A}_{1}^{\ell} L^{\ell} = (\mathbf{I} + \mathbf{A}_{1} L + \mathbf{A}_{1}^{2} L^{2} + \ldots) = (\mathbf{I} - \mathbf{A}_{1} L)^{-1}$$

then

$$\boldsymbol{y}_t = (\boldsymbol{I} - \boldsymbol{A}_1 L)^{-1} \boldsymbol{B}_0^{-1} \varepsilon_t$$

▶ note that this condition can be also obtained from the reduced form VAR(1) by rearranging it first as $(I - A_1 L)y_t = e_t$ from which $y_t = (I - A_1 L)^{-1} B_0^{-1} \varepsilon_t$

b thus let **S** be the matrix of long run cumulative effects of ε on **y** given by

$$S = (I + A_1 + A_1^2 + ...)B_0^{-1} = (I - A_1)^{-1}B_0^{-1}$$

▶ in a bivariate framework, Blanchard and Quah impose a constraint that second shock has no cumulative long run effect on first variable, which means that $S_{12} = 0$

▶ if we denote the elements of matrix $(I - A_1)^{-1}$ as

$$(\boldsymbol{I} - \boldsymbol{A}_1)^{-1} = \begin{bmatrix} \tilde{a}_{11} & \tilde{a}_{12} \\ \tilde{a}_{21} & \tilde{a}_{22} \end{bmatrix}$$

the system of 4 equations in 4 unknowns $\{\tilde{b}_{0,11}, \tilde{b}_{0,12}, \tilde{b}_{0,21}, \tilde{b}_{0,22}\}$ becomes

$$\begin{aligned} \sigma_1^2 &= \tilde{b}_{0,11}^2 + \tilde{b}_{0,12}^2 \\ \sigma_{12} &= \tilde{b}_{0,11} \tilde{b}_{0,21} + \tilde{b}_{0,12} \tilde{b}_{0,22} \\ \sigma_2^2 &= \tilde{b}_{0,21}^2 + \tilde{b}_{0,22}^2 \\ 0 &= \tilde{a}_{11} \tilde{b}_{0,12} + \tilde{a}_{21} \tilde{b}_{0,22} \end{aligned}$$

where the last condition corresponds to $S_{12} = 0$

this system can be easily solved given parameters {σ₁², σ₂², σ₁₂, ã₁₁, ã₂₁} (which come from Σ_e and A₁)

```
# obtain data on real GDP and unemployment rate
# construct approximate quarter-over-quarter GDP growth rates
v_tbl <- inner_join(tq_get("GDPC1", get = "economic.data",</pre>
                           from = "1947-01-01", to = "2018-12-31") %>%
                        rename(rGDP = price) %>%
                        mutate(dlrGDP = 100*(log(rGDP) - lag(log(rGDP)))),
                    tq_get("UNRATE", get = "economic.data",
                           from = "1947-01-01", to = "2018-12-31") %>%
                        rename(UR = price) %>%
                        tg transmute(select = UR, mutate fun = to.guarterly) %>%
                        mutate(date = as.Date(date)).
                    by = "date") %>%
    mutate(yearq = as.yearqtr(date)) %>%
    dplvr::select(vearg, dlrGDP, UR)
# Blanchard and Quah use 1950Q2 to 1987Q4 as sample, and demean the data
v xts <- v tbl %>%
    filter(yearg >= "1950 Q2", yearg <= "1987 Q4") %>%
    mutate_at(vars(dlrGDP,UR), funs(. - mean(.))) %>%
    tk xts(select= c("dlrGDP", "UR"), date var = vearg)
```

```
# estimate reduced form VAR
mod_var <- VAR(y_xts, ic = "SC", lag.max = 8)</pre>
```

```
# Blanchard-Quah long run restriction: row 1 column 2 element of the cumulative effect matrix is 0
mod_svar <- BQ(mod_var)
summary(mod_svar)
```

```
##
## SVAR Estimation Results:
## _____
##
## Call:
## BQ(x = mod_var)
##
## Type: Blanchard-Quah
## Sample size: 149
## Log Likelihood: -232.816
##
## Estimated contemporaneous impact matrix:
##
           dlrGDP
                       UR
## dlrGDP 0.79328 -0.5393
         -0.03914 0.3787
## UR
##
## Estimated identified long run impact matrix:
          d1rGDP
##
                    UR.
## dlrGDP 0.5734 0.000
## UR
         -2 6987 6 159
##
## Covariance matrix of reduced form residuals (*100):
##
         dlrGDP
                    UR
## dlrGDP 92.01 -23.53
         -23.53 14.50
## UR
```

```
    in the output on the previous slide the contemporaneous impact matrix reported is B<sub>0</sub><sup>-1</sup>, it shows the immediate effect of ε<sub>j,t</sub> on y<sub>i,t</sub> upon impact ##
    ## Estimated contemporaneous impact matrix:
    ## dlrGDP UR
    ## dlrGDP 0.79328 -0.5393
    ## UR -0.03914 0.3787
```

- rows refer to two variables (Δ log GDP_t, UR_t), and the columns to the two shocks technology shock ε_{1,t} and non-technology shock ε_{2,t}
- here on impact a positive one standard deviation technology shock increases GDP by 0.793% and lowers unemployment rate by 0.0391 percentage points
- a negative one standard deviation non-technology shock lowers GDP on impact by 0.539%, increases unemployment rate by 0.378 percentage points

▶ the long run impact matrix reported shows the cumulative long run impact $\lim_{\ell \to \infty} \sum_{s=0}^{\ell} \psi_{s,ij} = 0$ ##
Estimated identified long run impact matrix:
dlrGDP UR
dlrGDP UR
dlrGDP 0.5734 0.000
UR -2.6987 6.159

- the long run cumulative effect of any non-technology shock on GDP is 0 (this is the long run constraint we imposed)
- the long run cumulative effect of a single positive one standard deviation technology shocks on GDP is to increase it by 0.576%

```
# standard non-cumulative IRFs
svar_irf <- irf(mod_svar, n.ahead = 40, ci = .9)</pre>
# cumulative svar irfs
svar_irf_c <- irf(mod_svar, n.ahead = 40, ci = .9, cumulative = TRUE)</pre>
# arrange IRF data into a tibble to be used with applot
svar_irf_tbl <-</pre>
    bind rows(# standard IRFs for UR
              svar irf %>%
                  keep(names(.) %in% c("irf", "Lower", "Upper")) %>%
                  modify depth(2, as_tibble) %>%
                  modify_depth(1, bind_rows, .id = "impulse") %>%
                  map df(bind_rows, .id = "key") %>%
                  dplyr::select(-dlrGDP) %>%
                  gather(response, value, -kev, -impulse),
              # cumulative IRFs for GDP
              svar_irf_c %>%
                  keep(names(.) %in% c("irf", "Lower", "Upper")) %>%
                  modify_depth(2, as_tibble) %>%
                  modify depth(1, bind_rows, .id = "impulse") %>%
                  map df(bind rows, .id = "kev") %>%
                  dplvr::select(-UR) %>%
                  gather(response, value, -key, -impulse)) %>%
    group by(key, impulse, response) %>%
    mutate(lag = row_number()) %>%
    ungroup() %>%
    # change signs for the non-technology shock IRFs so that they show effects of a positive shock
    mutate(value = if else(impulse == "UR", -value, value)) %>%
    spread(kev, value)
```


SVAR Impulse Response Functions

- the peak effect for both shocks occurs 3 quarters after the shock hits the economy
- in case of a positive one standard deviation shock to technology, at the peak GDP increases by about 1% and unemployment rate falls by roughly 0.25 percentage points
- in case of a positive one standard deviation non-technology shock, at the peak GDP increases by about 1% and unemployment rate falls by roughly 0.57 percentage points

construct longer cumulative IRFs, and keep non-technology shocks as negative one svar_irf_c_longer <- irf(mod_svar, n.ahead = 100, cumulative = TRUE, boot = FALSE)</pre>

note that by construction the contemporaneous impact matrix from summary(mod_svar)

Estimated contemporaneous impact matrix: ## dlrGDP UR ## dlrGDP 0.79328 -0.5393 ## UR -0.03914 0.3787

is identical to the elements of the IRFs for period 0 (impact period)

```
svar_irf_c_longer$irf[[1]][1,]
```

```
## dlrGDP UR
## 0.79328160 -0.03914466
svar_irf_c_longer$irf[[2]][1,]
```

dlrGDP UR ## -0.5392647 0.3787316

also note that the long run impact matrix from summary(mod_svar)

##
Estimated identified long run impact matrix:
dlrGDP UR
dlrGDP 0.5734 0.000
UR -2.6987 6.159

is essentially the same as the elements of the IRFs for period 100 ${\tt svar_irf_c_longer\$irf[[1]][101,]}$

dlrGDP UR
0.5733992 -2.6986514
svar_irf_c_longer\$irf[[2]][101,]

dlrGDP UR ## -8.760994e-09 6.159035e+00

Horizon

FEVD for UR

Horizon

other examples of long-run neutrality where changes in nominal variables have no effect on real economic variables in the long-run:

- permanent change in nominal money stock has no long-run effect on the level of real output
- permanent change in the rate of inflation has no long-run effect on unemployment (vertical Phillips curve)
- permanent change in the rate of inflation has no long-run effect on real interest rates (long-run Fisher relationship).

- price puzzle: in a VAR with y_t = (log GFP_t, log p_t^{GDP}, r_t) after monetary tightening prices go up which is completely counter intuitive according to the standard transmission mechanism
- Sims (1992): (i) interest rate not the only instrument and (ii) prices appear to rise because the VAR model does not include information about future inflation that is available to Fed
- Uhlig (2005): study monetary policy shocks using restrictions which are implied by several theoretical economic models - a contractionary monetary policy shock does not
 - reduce short term interest rate for x periods after the shock
 - increase prices for x periods after the shock
 - increase monetary aggregates (reserves) for x periods after the shock

```
► consider a simple VAR with GDP growth rate, inflation rate, and nominal interest rate so that \mathbf{y}_t = (\Delta \log GDP_t, \Delta \log p_t^{GDP}, FF_t)'
```

```
library(Quand1)
Quand1.api_key('DLk9RQrfTVkD4UTKc7op')
rGDP <- Quand1("FRED/GDPC1", type="zoo")
pGDP <- Quand1("FRED/GDPDEF", type="zoo")
rFF <- Quand1("FRED/FEDFUNDS", collapse="quarterly", type="zoo")
lrGDP <- log(rGDP)*100
lpGDP <- log(rGDP)*100
y <- cbind(lrGDP, lpGDP, rFF)
vlabels <- c("log(GDP)", 'GDP deflator", "FF rate")
y <- na.trim(y)
y <- windw(y, end="2007_04")</pre>
```

 IRFs based on Choleski decomposition - increase in nominal interest rate is associated with price increase in future

```
library(vars)
mod_var <- VAR(y, ic = "SC", lag.max = 16, type = "none")
svar_irf <- irf(mod_var, n.ahead = 40, ci = .9)
par(mfrow = c(3.3), cex = 0.6, mar = c(4.4.2.1))</pre>
```

```
plot(svar_irf, plot.type="single", ask = FALSE)
```


IRF based on sign restriction that a contractionary monetary policy increases nominal interest rate and decreases prices for at least 4 quarters

```
sign restrictions are only weak restrictions on B<sub>0</sub>, in the SVAR model there
is a lot of uncertainty regarding the response of GDP to an increase in
nominal interest rate
library(VARsignR)
constr <- c(+3,-2)
mod_svar <- uhlig.reject(as.ts(y), nlags=2, constant=FALSE, steps=40, constrained=constr)
irfplot(mod_svar$IRFS, type="median", labels=vlabels)
```