Eco 5316 Time Series Econometrics
Lecture 16 Vector Autoregression (VAR) Models
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Motivation

» theoretical models are developed to shed light on interactions and dynamic
relationship between variables

>
>
>
>
>

income, consumption

interest rates, investment

interest rates, inflation, output gap

interest rates, exchange rates

return of individual stocks, stock market index

» following similar goals, we will now move from univariate times series
models to multivariate time series models
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Intervention Analysis

> example: effect of installing metal detectors at airports (starting in January
1973) on number of aircraft hijackings

Yt = Go+drye—1t+wxe+e;
where x; = 0 for t < 1973M1 and x; = 1 for t > 1973M1

» this model can be rewritten as

P w41
T ol T L T T

_ %o — , — ,
ye = -6 +w0;¢1Xt—r+;¢1€t—:

> immediate impact is given by wo, long term effect is wo/(1—¢1)

or
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Intervention Analysis

alternative ways how to model interventions

» pulse function - temporary intervention: x = 1 if t = t;, and x; =0
otherwise

» pure jump function - if the intervention is permanent, implemented fast:
x¢ = 1if t > t;, and x; = 0 otherwise

» prolonged impulse function - intervention in place for a limited time:
x; = 1if t € [t;, 4+ D], and x; = 0 otherwise

» gradually changing function - intervention phased in, implemented
gradually over time: for example x; = min{(t—t;+1)/4,1} if t > t;, and
x; = 0 otherwise
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Autoregressive Distributed Lag (ARDL) model

> going beyond deterministic 0/1 dummy variable and allowing for some
general exogenous variable x;, which has effect of y; that is distributed over
time yields an autoregressive distributed lag model, ARDL(p, r)

P(L)yr = 6(L)xi+ev
where ¢(L) is lag polynomial of order p, 6(L) is lag polynomial of order r
5(1)

» immediate effect is do, long-run effect cumulative effect is o)

» crucial assumption: {x;} is exogenous, evolves independently of {y:}
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Autoregressive Distributed Lag (ARDL) model

autoregressive distributed lag model nests

> static regression model: ¢(L) =1, 6(L) = do
> autoregressive model AR(p): ¢(L) =1—¢1—...—¢p, (L) =0
> distributed lag DL(r): ¢(L) =1, 6(L) = do+01L+...+0,L"
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Sims’ Critique

» intervention analysis and ARDL model assume that there is no feedback
from {y:} to {x¢}, thus {x:} is truly exogenous

» but such feedback is likely to exist for some policies - some policy variables
are set with specific reference to the state of other variables in the system
(e.g. Fed setting interest rate)

» Sims (1980): the proper way is then to estimate multivariate models in
unrestricted reduced form, treating all variables as endogenous
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Bivariate Structural VAR(1) Model

» as with ARMA models, we will assume that times series are weakly
stationary

> suppose that weakly stationary time series {y1.:}, {y2,:} follow
yi,t = co,1—bo, 12yt +b11iyie—1+bi 2y e—1+€1e
Yo,t = Co2—bo21y1,e+bi2iyie—1+ b1 2oy i1+

or equivalently
Boy: = co+ By, ;te:

where

B — 1 b2 B. — bi11 b2 co = (1 e, — (Lt
0 bop1 1 ! b1 b1 0 0,2 ¢ €2,

and

2 0
E(e:)=0 var(es) = (061 2 )
€2

» can't estimate this by OLS since yi,: has a contemporaneous effect on y» ¢
and y» ; has a contemporaneous effect on y;; - endogeneity problem - if
regressors and error terms are correlated, OLS estimates are biased
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Bivariate Reduced Form VAR(1)

> suppose that y, = (y1,t, y2,:)’ follows
Boy, = co+Biy,_,+e:
with E(e;) = 0, var(e:) = Z.
» premultiply by BO_1 to obtain
Yy =c+Ay, +e;

where ¢ = By 'co, A1 = B, 'B1, e; = B;'e;, in addition also
E(e:) =0 and var(e;) = X. = By 'X.B; "

this system can now be estimated equation by equation using standard OLS

» even though the innovations e; may be contemporaneously correlated, OLS
is efficient and equivalent to GLS since all equations have identical
regressors

» on structural vs reduced form models:
https://en.wikipedia.org/wiki/Reduced_form
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Example: Bivariate Structural and Reduced Form VAR(1)
> suppose that y, = (y1,¢, y2,t)’ follows a structural VAR(1)

Boy, = co+B1y,_;+e&:

with

0= (3) o= (1) =) ==()

» then we have
1 (10
5= (39)

and thus the associated reduced form VAR(1) model for y, is

Ye=ctAy, ;+e:

a=(5%) =) ==(%)

> a simulated path of y, with 100 observations is below in panel (i) - note
that {y1,:} and {y»,:} tend to move in the same direction

with
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Example: Bivariate Structural and Reduced Form VAR(1)
> alternatively, suppose that y, = (y1,t, y2,¢)" follows a structural VAR(1)

Boy, = co+B1y,_;+e&:

s=(51) &=(573) «=(5) ==(s9)

» then we have
-1 10
5= (_59)

and thus the associated reduced form VAR(1) model for y, is

with

Ye=ctAy, +e:

a- (572 = (0) =-(123)

> a simulated path of y, with 100 observations is below in panel (ii) - note
that {y1,:} and {y»:} tend to move in opposite directions

with
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Example: Bivariate Structural and Reduced Form VAR(1)

panel (i) panel (ii)

— Yt — Yt
< o - Yot < o o Yae
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General Reduced Form VAR(p) Model

> multivariate order p VAR model: suppose that ¥, = (yi,e, Y265+, Yh,t)
and that
Ye=ctAy, 1+.. +Ay, ,te:

where c, y,, e; are kx 1 vectors, and A; are kX k matrices
» using the lag operator we can write
A(L)y, = c+e;
where A(L) is now a matrix polynomial in lag operator

» so VAR(p) vs AR(p) are kind of like Ice Ice Baby vs Under Pressure:
https://www.youtube.com/watch?v=6TLo4Z_LWu4
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Lag Selection

> VAR(p) has k+pk® parameters

» each additional lag introduces additional k* parameters, model thus become
overparameterized quickly, and a lot of parameters will be insignificant

» information criteria - choose p to minimize AIC, SIC
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Example

suppose we want to analyze joint dynamics of house prices in Los Angeles and
Riverside, two MSAs about 60 miles apart

library(tidyquant)
library(ggplot2)
library(ggfortify)

theme_set (theme_bw() +
theme(strip.text.x = element_text(hjust = 0),
strip.text.y = element_text(hjust = 1),
strip.background = element_blank()))

# obtain data on house price index for Los Angeles MSA and for Riverside MSA
hpi_tbl <-
tq_get (c("ATNHPIUS31084Q", "ATNHPIUS40140Q"), get = "economic.data",
from = "1940-01-01", to = "2018-12-31") %>%
group_by (symbol) %>%
rename(y = price) %>/
mutate(dly = log(y) - lag(log(y)),
msa = case_when(symbol == "ATNHPIUS31084Q" ~ "LA",
symbol == "ATNHPIUS40140Q" ~ "RI")) %>%
ungroup() %>%
select(msa, date, y, dly)
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Example
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Example

# convert log change in house price index in Los Angeles MSA and for Riverside MSA into ts

library(timetk)
hpi_ts <-
hpi_tbl %>Y

library(vars)
VARselect (hpi_ts, lag.max = 8, type = "const") %>} print(digits =

##
#
##
##
##
##
##
##
##
##
##
##
##
##
##

#

select (msa,
spread(msa,
filter(date

date, dly) %>%
dly) %>%
>= "1976-07-01" & date <= "2012-10-01") %>%

tk_ts(select = c("LA","RI"), start = 1976.5, frequency = 4)

$selection

AIC(n) HQ(n)

3

$criteria

AIC(n) -1.
HQ(n) -1.
SC(n) -1.
FPE(n) 4.

AIC(n) -1.
HQ(n) ~-1.
sC(n) -1.
FPE(n) 5.

1

1
683e+01
678e+01
671e+01
883e-08

7
676e+01
650e+01
612e+01
282e-08

sC(n)

1

-1.
-1.
-1.
.115e-08 4.862e-08 5.024e-08 5.119e-08

-1.
-1.

-1

FPE(n)

3

2 3 4 5
679e+01 -1.684e+01 -1.681e+01 -1.679e+01

670e+01 -1.672e+01 -1.665e+01 -1.660e+01
658e+01 -1.654e+01 -1.643e+01 -1.632e+01

8
671e+01
642e+01

.599e+01
.542e-08

6
-1.680e+01
-1.657e+01
-1.625e+01

5.069e-08
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Example

varl <- VAR(hpi_ts, p = 1, type = "const")
varl

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

more detailed var_roll_results (standard errors, t-statistics, ...) can be obtained

VAR Estimation Results:

Estimated coefficients for equation LA:

Call:
LA = LA.11 + RI.11 + const

LA.11 RI.11 const
0.800845096 0.043970943 0.002211339

Estimated coefficients for equation RI:

Call:
RI = LA.11 + RI.11 + const

LA.11 RI.11 const
0.675674059 0.260252408 -0.001712618

using

summary (var1)
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Exageals

plot(varl, nc = 4, lag.acf = 16, lag.pacf = 16)

Diagram of fit and residuals for LA Diagram of fit and residuals for RI
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Granger Causality

» test whether lags of one variable enter the equation for another variable

» variable j does not Granger cause variable /i if all coefficients on lags of
variable j in the equation for variable i are zero, that is

avj = A= ... = apj=0
> we thus test Hop : a1 = ... = ap;; = 0 against Ha: 3¢ € {1,...,p} such

that ag,;; # 0 using F-statistic and reject null if the statistic exceeds the
critical value at the chosen level

» in addition: if the innovation to y;: and the innovation to y;; are correlated
we say there is instantaneous causality
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Granger Causality

causality(varl, cause = "LA")

## $Granger

##

## Granger causality HO: LA do not Granger-cause RI
##

## data: VAR object varl

## F-Test = 24.125, df1 = 1, df2 = 284, p-value = 1.527e-06
##

##

## $Instant

##

## HO: No instantaneous causality between: LA and RI

##

## data: VAR object varil

## Chi-squared = 47.848, df = 1, p-value = 4.606e-12

causality(varl, cause = "RI")

## $Granger

##

## Granger causality HO: RI do not Granger-cause LA
##

## data: VAR object varil

## F-Test = 0.28268, dfl = 1, df2 = 284, p-value = 0.5954
## $Instant

## HO: No instantaneous causality between: RI and LA

## data: VAR object varl
## Chi-squared = 47.848, df = 1, p-value = 4.606e-12

21/47



Granger Causality

as the var_roll_results of the Granger causality test for VAR(1) show

> we reject that A log p5 does not Granger cause A log pF' since the p-value
in this case is 1.414x107°

> we can not reject that A log pft' does not Granger cause A log pi* since the
p-value in this case is 0.579

similar conclusion can be made for the VAR(3) model suggested by the AIC
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Granger Causalitv
varp <- VAR(hpi_ts, ic = "AIC", lag.max = 8, type = "const")

causality(varp, cause = "LA")

## $Granger

##

## Granger causality HO: LA do not Granger-cause RI
##

## data: VAR object varp

## F-Test = 6.434, dfl = 3, df2 = 272, p-value = 0.0003181
##

##

## $Instant

##

## HO: No instantaneous causality between: LA and RI

##

## data: VAR object varp

## Chi-squared = 48.627, df = 1, p-value = 3.096e-12

causality(varp, cause = "RI")

## $Granger

##

## Granger causality HO: RI do not Granger-cause LA
##

## data: VAR object varp

## F-Test = 1.097, df1 = 3, df2 = 272, p-value = 0.3508
##

##

## $Instant

## HO: No instantaneous causality between: RI and LA

## data: VAR object varp
## Chi-squared = 48.627, df = 1, p-value = 3.096e-12
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Granger Causality
based on the var_roll_results of the Granger causality test we thus remove the
lags of Alog pﬁ{t from the equation for A log p,ﬁf‘t

# define a matriz with restictions
mat_r <- matrix(1l, nrow = 2, ncol = 7)
mat_r[1, c(2,4,6)] <- 0

# estimate a restricted VAR

varp_r <- restrict(varp, method = "manual", resmat = mat_r)
varp_r

##

## VAR Estimation Results:

##

##

## Estimated coefficients for equation LA:

##

## Call:

## LA = LA.11 + LA.12 + LA.13 + const

##

## LA.11 LA.12 LA.13 const

## 0.800319772 -0.127773618 0.216096864 0.001355814

##

##

## Estimated coefficients for equation RI:

##

## Call:

## RI = LA.11 + RI.11 + LA.12 + RI.12 + LA.13 + RI.13 + const
##

## LA.11 RI.11 LA.12 RI.12 LA.13 RI.13
## 0.679607912 0.210590649 -0.125650165 0.044761983 0.066023457 0.075707566
## const

## -0.001979866
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Forecasting
recall: under quadratic loss function, the forecast is the conditional mean

for simplicity, we will analyze the VAR(1) case but the method can be
generalized to VAR(p) model in a straightforward way

» one step ahead forecast
Mg = Bty = e+ Ay,
and forecast error

Yer1 —Hepe = (C+A1yt+et+1) - (C+A1yt) = ert1

» two step ahead
Hepo)r = c+ALp, ),
and forecast error

Yo =Mty = <C+A1yt+l+ef+2) - (C+A1ﬂ't+1\t) = Areri1te2

» in general, h step ahead forecast
Hippe = C+A1u/t+h—1\t
and forecast error

h—1
Yeen—Hepne = A1 €t +Areen1t€en
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Forecasting
# construct 1 to 12 quarter ahead forecast
varl_f <- predict(varl, n.ahead
varl_f

##
##
##
##
##
##
##
##
##
##

##

##

$LA

[1,]
[2,]
[3,]
[4,]
[5,]1
[6,]
[7,1
[8,]
[9,]1
[10,]
[11,]
[12,]

$RI

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]
[8,]
[9,]
[10,]
[11,]
[12,]

fest
01634824
01598508
01560063
01525759
01496230
01471028
01449562
01431290
01415737
01402499
01391232
01381642

fcst
01549498
01336607
01256663
01209882
01174529
01145376
01120760
01099850
01082062
01066924
01054040
01043074

[
o oo

[
o oo

-0.
-0.
-0.
-0.
-0.
-0.

[
o o

[
oo ooo

-0.
-0.
-0.
-0.

lower

.00829709
.01627320
.02118879
.02449096
.02679879
.02845011

02965072
03053416
03119053
03168230
03205357
03233589

lower

.01850532
.02808790
.03351794
.03708597
.03957234
.04135587
.04265718
.04361794

04433394
04487189
04527910
04558955

12, ci =

upper
04099357
04824335
05239005
05500614
05672340
05787066
05864197
05915996
05950527
05973228
05987821
05996873

upper
04949527
05482004
05865121
06128360
06306292
06426339
06507239
06561495
06597519
06621037
06635990
06645103

and its 90/ confidence interval
0.

9)

CI
02464533
03225827
03678942
03974855
04176109
04316038
04414635
04484706
04534790
04570729
04596589
04615231

CI
03400030
04145397
04608458
04918478
05131763
05280963
05386479
05461645
05515457
05554113
05581950
05602029
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Forecasting

# fanchart - by default the step is 0.1

fanchart(vari_f, lwd = 2)

Fanchart for variable LA

fe}

S |

S

| —

v

o
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1
T T T T
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Fanchart for variable RI

o

S

S

8 | —

o

o

S
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1
T T T T
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Forecasting

library(ggfortify)
autoplot(vari_f) + geom_hline(yintercept = 0, linetype = "dashed") + theme_bw()

5
010
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2
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-0.10
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Forecasting

library(tibbletime)
library (broom)

# estimate rolling VAR with window size = window_length
window_length <- nrow(hpi_ts)
# create rolling VAR function with rollify from tibbletime package
roll_VAR <- rollify(function(LA, RI) {
x <- cbind(LA, RI)
VAR(x, ic = "AIC", lag.max = 8, type = "const")

window = window_length, unlist = FALSE)

# estimate rolling VAR model, create 1 period ahead rolling forecasts
var_roll_results <-
hpi_tbl %>%
dplyr::select(msa, date, dly) %>%
spread(msa, dly) %>
filter(date >= "1976-07-01") %>%
as_tbl_time(index = date) %>%
mutate(VAR.model = roll_VAR(LA,RI)) %>%
filter(!is.na(VAR.model)) %>%
mutate(var_coefs = map(VAR.model, (. %$% map(varresult, tidy, conf.int = TRUE) %>%
map(as.tibble) %>
bind_rows(.id = "msa"))),
var_f = map(VAR.model, (. %>} predict(n.ahead = 1) %$%
fest W%
map(as.tibble) %>
bind_rows(.id = "msa"))))
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Forecasting

# extract 1 period ahead rolling forecasts
var_roll_f <-

bind_rows (
# actual data
hpi_tbl 7>%

dplyr::select(date, msa, dly) %>%
rename (value = dly) %>%
mutate(key = "actual"),
# forecasts
var_roll_results %>%
dplyr::select(date, var_f) %>%
unnest (var_f) %>%
rename(value = fcst) %>
mutate(key = "forecast",
date = date %m+, months(3))
) %%
arrange(date, msa)

# plot the 1 period ahead Tolling forecasts
var_roll_f 7>%
dplyr::filter(date >= "2000-01-01") %>%
mutate(msa.f = factor(msa, labels = c("Los Angeles","Riverside"))) %>%
ggplot(aes(x = date, y = value, col = key, group = key)) +
geom_ribbon(aes(ymin = lower, ymax = upper), color = NA, fill = "steelblue", alpha = 0.2) +
geom_line(size = 0.7) +
geom_point(size = 0.7) +
geom_hline(yintercept = 0, linetype = "dashed") +
scale_color_manual(values = c("black","blue")) +

labs(x = "", y = "",

title = "Rolling one step ahead forecast for House Price Index, quarterly, log change") +
facet_wrap(~ msa.f, scales = "free_y", ncol = 1) +
theme (legend.position = "none")
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Forecasting

Rolling one step ahead forecast for House Price Index, quarterly, log change

Los Angeles

Riverside

2000 2005 2010 2015
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Innovations Accounting

two important tools used to examine relationships among economic variables

» impulse-response analysis: the goal is to track the response of a variable
yi to a one time shock ¢;j ¢

» forecast error variance decomposition: the goal is to find the fraction of
the overall fluctuations in y; that is due to shock ¢+

as with forecasting, we will analyze the VAR(1) case but the method can be
generalized for VAR(p) model
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Impulse-Response Functions (IRF)

»

| 2
>

goal: obtain response of y; over time to a one time increase in ¢; ;

IRFs are constructed using vector moving average (VMA) representation

consider a reduced form VAR(1)
yi=c+tAy, 1+et
by repeated substitutions

oo
¥ =c+A; (C+A1yt—2+et—l) +er=...= u—i—Z Ale,
h=0

where p = Z;’O:O Ai’c is the long run average of y

since ey = Balst we can define Wy, = A’l’Ba1 and write

[ee)
Yi—p = Z“’hsph
h=0

Pp,jj i.e. row i column j element of matrix W, shows

> the impact of a unit increase in g; ;_p on y; ;
» the impact of a unit increase in €+ on y; 114

» a plot of ¥y, j; as function of h is the impulse-response function plot

» confidence intervals for IRFs - parameters of the VAR model are unknown,

estimated, there is thus uncertainty regarding the response of y to changes in
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Impulse-Response Functions (IRF)

Oyi, OYit+h
TOejr

» the IRF components Wy, ; show that is, how y; responds over time to

a one time increase in ¢;

» when constructing the IRF the size of the one time shock in ¢; is taken to
be one standard deviation o,

> the plot of the IRF for y; shows the effect ¢; of as deviations of y; from its
long run equilibrium p;

» because all variables in VAR are weakly stationary, deviations eventually
converge to 0 as the system converges back to the long run equilibrium
given by u
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Impulse-Response Functions (IRF)

varl_irf <- irf(varl, n.ahead = 40)
par(mfcol = c(2,2), cex = 0.8, mar = c(3,4,2,2))
plot(varl_irf, plot.type = "single", lwd = 2)
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Impulse-Response Functions (IRF)

IRFs for VAR(1) model of house prices in Los Angeles and Riverside show that

> Alogpr and Alog pf* react to €14 in similar way and with similar
magnitude - on impact the price increases by about 1.5% in both markets,
this is followed by a gradual decline but the effects are significant even after
16 quarters (4 years)

> Alog plf increases only very little in response to e/ and this response is
not statistically significant since the 95% confidence interval contains 0

> Alog phA increases more in response to £g; but this increase is short lived
and the variable converges back within about 3 quarters

» the demand and supply shock in the Los Angeles market thus clearly
dominate the dynamics and the variability of home prices in both markets,
their transmission into the Riverside market is quite strong
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Impulse-Response Functions (IRF)

# arrange IRF data into a tibble to be used with ggplot
varl_irf_tbl <-
varl_irf[1:3] 7%>%
modify_depth(2, as.tibble) %>%
modify_depth(1l, bind_rows, .id = "impulse") %>%
map_df (bind_rows, .id = "key") %>%
gather (response, value, -key, -impulse) %>7
group_by(key, impulse, response) %>/
mutate(lag = row_number()) %>%
ungroup() %>%
spread(key, value)

# plot IRFs using ggplot
ggplot(data = varl_irf_tbl, aes(x = lag, y = irf)) +
geom_ribbon(aes(x = lag, ymin = Lower, ymax = Upper), fill = "lightgray", alpha = .3) +
geom_line() +
geom_hline(yintercept = 0, linetype = "dashed") +
labs(x = "", y = "",
title = "Orthogonal Impulse Response Functions (rows: response, columns: impulse)") +
facet_grid(response ~ impulse, switch = "y")
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Impulse-Response Functions (IRF)

Orthogonal Impulse Response Functions (rows: response, columns: impulse)
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Forecast Error Variance Decomposition (FEVD)
» goal: find fraction of overall fluctuations in y; that is due to shock ¢; ;

> we obtained that the h step ahead forecast error of the VAR(1) model is

h—1
Yerh—Hepne = A1 €1t .+ Ar€ein-1t€eh

> like with IRFs, since e, = By 'e; we define W, = A{B; ! and write

Yerh—Miihe = Wy i1+ .. +Wigrin—1+Woerin

» thus for variable y; the variance of h step ahead forecast error is given by

2
Oy h = var(Veeh—Heiht) = E Usj E ""T ij
j=1

and the portion of o, , that is due to shock {j ¢} is

h—1 .2
GeJZ o Vi

k h
Zj:l Ugf ZT:(I) wiy"j

» this yields a decomposition of forecast error variance, and provides insight
which shocks are behind the fluctuations of y;
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Forecast Error Variance Decomposition (FEVD)

varl_fevd <- fevd(varl, n.ahead = 40)

decomposition for A log pf*
varl_fevd[["LA"]][c(1,4,8,40),]

## LA RI
## [1,] 1.0000000 0.000000000
## [2,] 0.9978296 0.002170428
## [3,] 0.9973050 0.002695011
## [4,] 0.9971590 0.002841018

thus at 1 quarter horizon fluctuations are entirely due to €,4, and at 40 quarters
horizon (i.e. 10 years) more than 99% are due to €,4 and less than 1% due to eg

decomposition for A log pf!
varl_fevd[["RI"]][c(1,4,8,40),]

## LA RI
## [1,] 0.4925051 0.5074949
## [2,] 0.7379736 0.2620264
## [3,] 0.7865878 0.2134122
## [4,] 0.8005838 0.1994162

thus at 1 quarter horizon fluctuations are about half and half due to €4 and €;4;
at 40 quarters horizon about 80% are due to £,4 and 20% due to eg,

40 /47



Forecast Error Variance Decomposition (FEVD)

plot(varl_fevd)
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Forecast Error Variance Decomposition (FEVD)

# arrange FEVD data into a tibble to be used with ggplot
varl_fevd_tbl <-

varl_fevd %>

modify_depth(1l, as.tibble) %>%

map_df (bind_rows, .id = "variable") %>%

gather (shock, value, -variable) %>%

group_by(shock, variable) %>%

mutate (horizon = row_number()) %>%

ungroup ()

# plot FEVD using ggplot
ggplot(data = varl_fevd_tbl, aes(x = horizon, y = value, fill = shock)) +
geom_col(position = position_stack(reverse = TRUE)) +
scale_fill_manual(values = c('gray70","gray40")) +
labs(x = "horizon", y = "fraction of overall variance",
title = "Forecast Error Variance Decomposition") +
facet_wrap(~variable, ncol = 1)
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Forecast Error Variance Decomposition (FEVD)

Forecast Error Variance Decomposition
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Reduced Form Errors vs Structural Shocks

note that

> IRFs trace out the response of y, to structural shocks €;, not reduced form
errors e;

» FEVD gives the fraction of variance of y, caused by different structural
shocks &¢, not reduced form errors e;

> since ; = Boe: to construct the IRFs and FEVD for a VAR(p) model we
need to know By, in addition to A,..., A,
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Identification of Structural Shocks

Q: Is it possible to recover co, {Bi}!_, and . from ¢, {Ai},_; and Z.?

A: Only if we are willing to impose additional restrictions.
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Identification of Structural Shocks

Example: bivariate VAR(1)

» reduced form VAR(1) yields estimates of 9 parameters in ¢, A;, X.
(yl,t) _ (C1)+(31,11 61,12) (,Vl,tfl)_’_(el,t) . — (Uf 0122)
Yot (=] ai,21 ai,22 y2,t—1 et J12 05
» we are trying to uncover cg, By, Bi, X which contain 10 unknown values
( 1 b0,12) (ym) _ (60,1)+<b1,11 b1,12> (yl,t—1)+<51,t) s — (‘731 0 )
boo1 1 Yot 0,2 b1o1 b122) \y2,t-1 €2t € 0 032

> one additional restriction on parameters thus needs to be imposed in the VAR(1)

> one possible way to do this is the Choleski decomposition

> impose bg,12 = 0 so that y; ; has contemporaneous effect on y» +, but y> ;

does not have a contemporaneous effect on y; ¢

P this also means that both €1,+ and €2+ have a contemporaneous effect on
Y2,¢, but only €1+ has an effect on y; ;

» this is how vars package constructs IRFs and FEVD shown on previous slides
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Identification of Structural Shocks

general case, a VAR(p) model with k variables

| g

vV v.v Vv

reduced form has k4 pk®4k(k+1)/2 parameters

structural form has k+(p+1)k*+k parameters

identification thus requires k(k—1)/2 additional restrictions

Choleski decomposition: set elements of By above main diagonal equal zero

ordering of variables in the VAR(p) model thus matters:

Yit is only affected by shocks €1, ..., €i¢, remaining shocks €it1e,. .., €kt
have no contemporaneous effect on y; . and will only affect y; ., for t' >t
indirectly through their effect on yji1,¢, ..., Yi,e
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