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Motivation

I theoretical models are developed to shed light on interactions and dynamic
relationship between variables
I income, consumption
I interest rates, investment
I interest rates, inflation, output gap
I interest rates, exchange rates
I return of individual stocks, stock market index

I following similar goals, we will now move from univariate times series
models to multivariate time series models
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Intervention Analysis

I example: effect of installing metal detectors at airports (starting in January
1973) on number of aircraft hijackings

yt = φ0+φ1yt−1+ωxt +εt

where xt = 0 for t < 1973M1 and xt = 1 for t ≥ 1973M1
I this model can be rewritten as

yt = φ0

1−φ1L
+ ω0

1−φ1L
xt + 1

1−φ1L
εt

or

yt = φ0

1−φ1
+ω0

∞∑
i=0

φi
1xt−i +

∞∑
i=0

φi
1εt−i

I immediate impact is given by ω0, long term effect is ω0/(1−φ1)
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Intervention Analysis

alternative ways how to model interventions
I pulse function - temporary intervention: xt = 1 if t = tI , and xt = 0

otherwise
I pure jump function - if the intervention is permanent, implemented fast:

xt = 1 if t ≥ tI , and xt = 0 otherwise
I prolonged impulse function - intervention in place for a limited time:

xt = 1 if t ∈ [tI , tI +D], and xt = 0 otherwise
I gradually changing function - intervention phased in, implemented

gradually over time: for example xt = min{(t−tI +1)/4, 1} if t ≥ tI , and
xt = 0 otherwise
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Autoregressive Distributed Lag (ARDL) model

I going beyond deterministic 0/1 dummy variable and allowing for some
general exogenous variable xt , which has effect of yt that is distributed over
time yields an autoregressive distributed lag model, ARDL(p, r)

φ(L)yt = δ(L)xt +εt

where φ(L) is lag polynomial of order p, δ(L) is lag polynomial of order r

I immediate effect is δ0, long-run effect cumulative effect is δ(1)
θ(1)

I crucial assumption: {xt} is exogenous, evolves independently of {yt}
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Autoregressive Distributed Lag (ARDL) model

autoregressive distributed lag model nests
I static regression model: φ(L) = 1, δ(L) = δ0
I autoregressive model AR(p): φ(L) = 1−φ1−. . .−φp, δ(L) ≡ 0
I distributed lag DL(r): φ(L) = 1, δ(L) = δ0+δ1L+. . .+δr Lr
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Sims’ Critique

I intervention analysis and ARDL model assume that there is no feedback
from {yt} to {xt}, thus {xt} is truly exogenous

I but such feedback is likely to exist for some policies - some policy variables
are set with specific reference to the state of other variables in the system
(e.g. Fed setting interest rate)

I Sims (1980): the proper way is then to estimate multivariate models in
unrestricted reduced form, treating all variables as endogenous
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Bivariate Structural VAR(1) Model
I as with ARMA models, we will assume that times series are weakly

stationary
I suppose that weakly stationary time series {y1,t}, {y2,t} follow

y1,t = c0,1−b0,12y2,t +b1,11y1,t−1+b1,12y2,t−1+ε1,t
y2,t = c0,2−b0,21y1,t +b1,21y1,t−1+b1,22y2,t−1+ε2,t

or equivalently
B0yt = c0+B1y t−1+εt

where

B0 =
(

1 b0,12
b0,21 1

)
B1 =

(
b1,11 b1,12
b1,21 b1,22

)
c0 =

(
c0,1
c0,2

)
εt =

(
ε1,t
ε2,t

)
and

E(εt) = 0 var(εt) =
(
σ2
ε1 0
0 σ2

ε2

)
I can’t estimate this by OLS since y1,t has a contemporaneous effect on y2,t

and y2,t has a contemporaneous effect on y1,t - endogeneity problem - if
regressors and error terms are correlated, OLS estimates are biased
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Bivariate Reduced Form VAR(1)

I suppose that y t = (y1,t , y2,t)′ follows

B0y t = c0+B1y t−1+εt

with E(εt) = 0, var(εt) = Σε

I premultiply by B−10 to obtain

y t = c +A1y t−1+et

where c = B−10 c0, A1 = B−10 B1, et = B−10 εt , in addition also
E(et) = 0 and var(et) = Σe = B−10 ΣεB−10

′

this system can now be estimated equation by equation using standard OLS
I even though the innovations et may be contemporaneously correlated, OLS

is efficient and equivalent to GLS since all equations have identical
regressors

I on structural vs reduced form models:
https://en.wikipedia.org/wiki/Reduced_form
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Example: Bivariate Structural and Reduced Form VAR(1)
I suppose that y t = (y1,t , y2,t)′ follows a structural VAR(1)

B0y t = c0+B1y t−1+εt

with

B0 =
(

1 0
−.5 1

)
B1 =

(
.6 .2
−.1 .5

)
c0 =

(
0
0

)
Σε =

(
1 0
0 1

)
I then we have

B−10 =
(
1 0
.5 1

)
and thus the associated reduced form VAR(1) model for y t is

y t = c +A1y t−1+et

with
A1 =

(
.6 .2
.2 .6

)
c =

(
0
0

)
Σe =

(
2 1
1 2.5

)
I a simulated path of y t with 100 observations is below in panel (i) - note

that {y1,t} and {y2,t} tend to move in the same direction
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Example: Bivariate Structural and Reduced Form VAR(1)
I alternatively, suppose that y t = (y1,t , y2,t)′ follows a structural VAR(1)

B0y t = c0+B1y t−1+εt

with

B0 =
(
1 0
.5 1

)
B1 =

(
.6 −.2
.1 .5

)
c0 =

(
0
0

)
Σε =

(
1 0
0 1

)
I then we have

B−10 =
(

1 0
−.5 1

)
and thus the associated reduced form VAR(1) model for y t is

y t = c +A1y t−1+et

with
A1 =

(
.6 −.2
−.2 .6

)
c =

(
0
0

)
Σe =

(
2 −1
−1 2.5

)
I a simulated path of y t with 100 observations is below in panel (ii) - note

that {y1,t} and {y2,t} tend to move in opposite directions
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Example: Bivariate Structural and Reduced Form VAR(1)
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General Reduced Form VAR(p) Model

I multivariate order p VAR model: suppose that y t = (y1,t , y2,t , . . . , yk,t)′
and that

y t = c +A1y t−1+. . .+Apy t−p +et

where c, y t , et are k×1 vectors, and Ai are k×k matrices
I using the lag operator we can write

A(L)y t = c +et

where A(L) is now a matrix polynomial in lag operator
I so VAR(p) vs AR(p) are kind of like Ice Ice Baby vs Under Pressure:

https://www.youtube.com/watch?v=6TLo4Z_LWu4
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Lag Selection

I VAR(p) has k +pk2 parameters
I each additional lag introduces additional k2 parameters, model thus become

overparameterized quickly, and a lot of parameters will be insignificant
I information criteria - choose p to minimize AIC, SIC
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Example

suppose we want to analyze joint dynamics of house prices in Los Angeles and
Riverside, two MSAs about 60 miles apart
library(tidyquant)
library(ggplot2)
library(ggfortify)

theme_set(theme_bw() +
theme(strip.text.x = element_text(hjust = 0),

strip.text.y = element_text(hjust = 1),
strip.background = element_blank()))

# obtain data on house price index for Los Angeles MSA and for Riverside MSA
hpi_tbl <-

tq_get(c("ATNHPIUS31084Q", "ATNHPIUS40140Q"), get = "economic.data",
from = "1940-01-01", to = "2018-12-31") %>%

group_by(symbol) %>%
rename(y = price) %>%
mutate(dly = log(y) - lag(log(y)),

msa = case_when(symbol == "ATNHPIUS31084Q" ~ "LA",
symbol == "ATNHPIUS40140Q" ~ "RI")) %>%

ungroup() %>%
select(msa, date, y, dly)
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Example

House Price Index, quarterly, log change

House Price Index, quarterly
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Example

# convert log change in house price index in Los Angeles MSA and for Riverside MSA into ts
library(timetk)
hpi_ts <-

hpi_tbl %>%
select(msa, date, dly) %>%
spread(msa, dly) %>%
filter(date >= "1976-07-01" & date <= "2012-10-01") %>%
tk_ts(select = c("LA","RI"), start = 1976.5, frequency = 4)

library(vars)
VARselect(hpi_ts, lag.max = 8, type = "const") %>% print(digits = 4)

## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
## 3 1 1 3
##
## $criteria
## 1 2 3 4 5 6
## AIC(n) -1.683e+01 -1.679e+01 -1.684e+01 -1.681e+01 -1.679e+01 -1.680e+01
## HQ(n) -1.678e+01 -1.670e+01 -1.672e+01 -1.665e+01 -1.660e+01 -1.657e+01
## SC(n) -1.671e+01 -1.658e+01 -1.654e+01 -1.643e+01 -1.632e+01 -1.625e+01
## FPE(n) 4.883e-08 5.115e-08 4.862e-08 5.024e-08 5.119e-08 5.069e-08
## 7 8
## AIC(n) -1.676e+01 -1.671e+01
## HQ(n) -1.650e+01 -1.642e+01
## SC(n) -1.612e+01 -1.599e+01
## FPE(n) 5.282e-08 5.542e-08
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Example

var1 <- VAR(hpi_ts, p = 1, type = "const")
var1

##
## VAR Estimation Results:
## =======================
##
## Estimated coefficients for equation LA:
## =======================================
## Call:
## LA = LA.l1 + RI.l1 + const
##
## LA.l1 RI.l1 const
## 0.800845096 0.043970943 0.002211339
##
##
## Estimated coefficients for equation RI:
## =======================================
## Call:
## RI = LA.l1 + RI.l1 + const
##
## LA.l1 RI.l1 const
## 0.675674059 0.260252408 -0.001712618

more detailed var_roll_results (standard errors, t-statistics, . . . ) can be obtained
using
summary(var1)
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Example
plot(var1, nc = 4, lag.acf = 16, lag.pacf = 16)
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Granger Causality

I test whether lags of one variable enter the equation for another variable
I variable j does not Granger cause variable i if all coefficients on lags of

variable j in the equation for variable i are zero, that is

a1,ij = a2,ij = . . . = ap,ij = 0

I we thus test H0 : a1,ij = . . . = ap,ij = 0 against HA : ∃` ∈ {1, . . . , p} such
that a`,ij 6= 0 using F -statistic and reject null if the statistic exceeds the
critical value at the chosen level

I in addition: if the innovation to yi,t and the innovation to yj,t are correlated
we say there is instantaneous causality
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Granger Causality
causality(var1, cause = "LA")

## $Granger
##
## Granger causality H0: LA do not Granger-cause RI
##
## data: VAR object var1
## F-Test = 24.125, df1 = 1, df2 = 284, p-value = 1.527e-06
##
##
## $Instant
##
## H0: No instantaneous causality between: LA and RI
##
## data: VAR object var1
## Chi-squared = 47.848, df = 1, p-value = 4.606e-12

causality(var1, cause = "RI")

## $Granger
##
## Granger causality H0: RI do not Granger-cause LA
##
## data: VAR object var1
## F-Test = 0.28268, df1 = 1, df2 = 284, p-value = 0.5954
##
##
## $Instant
##
## H0: No instantaneous causality between: RI and LA
##
## data: VAR object var1
## Chi-squared = 47.848, df = 1, p-value = 4.606e-12
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Granger Causality

as the var_roll_results of the Granger causality test for VAR(1) show
I we reject that ∆ log pLA

H does not Granger cause ∆ log pRI
H since the p-value

in this case is 1.414×10−6

I we can not reject that ∆ log pRI
H does not Granger cause ∆ log pLA

H since the
p-value in this case is 0.579

similar conclusion can be made for the VAR(3) model suggested by the AIC
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Granger Causality
varp <- VAR(hpi_ts, ic = "AIC", lag.max = 8, type = "const")
causality(varp, cause = "LA")

## $Granger
##
## Granger causality H0: LA do not Granger-cause RI
##
## data: VAR object varp
## F-Test = 6.434, df1 = 3, df2 = 272, p-value = 0.0003181
##
##
## $Instant
##
## H0: No instantaneous causality between: LA and RI
##
## data: VAR object varp
## Chi-squared = 48.627, df = 1, p-value = 3.096e-12

causality(varp, cause = "RI")

## $Granger
##
## Granger causality H0: RI do not Granger-cause LA
##
## data: VAR object varp
## F-Test = 1.097, df1 = 3, df2 = 272, p-value = 0.3508
##
##
## $Instant
##
## H0: No instantaneous causality between: RI and LA
##
## data: VAR object varp
## Chi-squared = 48.627, df = 1, p-value = 3.096e-12
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Granger Causality
based on the var_roll_results of the Granger causality test we thus remove the
lags of ∆ log pRI

H,t from the equation for ∆ log pLA
H,t

# define a matrix with restictions
mat_r <- matrix(1, nrow = 2, ncol = 7)
mat_r[1, c(2,4,6)] <- 0

# estimate a restricted VAR
varp_r <- restrict(varp, method = "manual", resmat = mat_r)
varp_r

##
## VAR Estimation Results:
## =======================
##
## Estimated coefficients for equation LA:
## =======================================
## Call:
## LA = LA.l1 + LA.l2 + LA.l3 + const
##
## LA.l1 LA.l2 LA.l3 const
## 0.800319772 -0.127773618 0.216096864 0.001355814
##
##
## Estimated coefficients for equation RI:
## =======================================
## Call:
## RI = LA.l1 + RI.l1 + LA.l2 + RI.l2 + LA.l3 + RI.l3 + const
##
## LA.l1 RI.l1 LA.l2 RI.l2 LA.l3 RI.l3
## 0.679607912 0.210590649 -0.125650165 0.044761983 0.066023457 0.075707566
## const
## -0.001979866
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Forecasting
recall: under quadratic loss function, the forecast is the conditional mean

for simplicity, we will analyze the VAR(1) case but the method can be
generalized to VAR(p) model in a straightforward way
I one step ahead forecast

µt+1|t = Ety t+1 = c +A1y t

and forecast error

y t+1−µt+1|t =
(
c +A1y t +et+1

)
−
(
c +A1y t

)
= et+1

I two step ahead
µt+2|t = c +A1µt+1|t

and forecast error

y t+2−µt+2|t =
(
c +A1y t+1+et+2

)
−
(
c +A1µt+1|t

)
= A1et+1+et+2

I in general, h step ahead forecast

µt+h|t = c +A1µt+h−1|t

and forecast error

y t+h−µt+h|t = Ah−1
1 et+1+. . .+A1et+h−1+et+h
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Forecasting
# construct 1 to 12 quarter ahead forecast and its 90% confidence interval
var1_f <- predict(var1, n.ahead = 12, ci = 0.9)
var1_f

## $LA
## fcst lower upper CI
## [1,] 0.01634824 -0.00829709 0.04099357 0.02464533
## [2,] 0.01598508 -0.01627320 0.04824335 0.03225827
## [3,] 0.01560063 -0.02118879 0.05239005 0.03678942
## [4,] 0.01525759 -0.02449096 0.05500614 0.03974855
## [5,] 0.01496230 -0.02679879 0.05672340 0.04176109
## [6,] 0.01471028 -0.02845011 0.05787066 0.04316038
## [7,] 0.01449562 -0.02965072 0.05864197 0.04414635
## [8,] 0.01431290 -0.03053416 0.05915996 0.04484706
## [9,] 0.01415737 -0.03119053 0.05950527 0.04534790
## [10,] 0.01402499 -0.03168230 0.05973228 0.04570729
## [11,] 0.01391232 -0.03205357 0.05987821 0.04596589
## [12,] 0.01381642 -0.03233589 0.05996873 0.04615231
##
## $RI
## fcst lower upper CI
## [1,] 0.01549498 -0.01850532 0.04949527 0.03400030
## [2,] 0.01336607 -0.02808790 0.05482004 0.04145397
## [3,] 0.01256663 -0.03351794 0.05865121 0.04608458
## [4,] 0.01209882 -0.03708597 0.06128360 0.04918478
## [5,] 0.01174529 -0.03957234 0.06306292 0.05131763
## [6,] 0.01145376 -0.04135587 0.06426339 0.05280963
## [7,] 0.01120760 -0.04265718 0.06507239 0.05386479
## [8,] 0.01099850 -0.04361794 0.06561495 0.05461645
## [9,] 0.01082062 -0.04433394 0.06597519 0.05515457
## [10,] 0.01066924 -0.04487189 0.06621037 0.05554113
## [11,] 0.01054040 -0.04527910 0.06635990 0.05581950
## [12,] 0.01043074 -0.04558955 0.06645103 0.05602029
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Forecasting
# fanchart - by default the step is 0.1
fanchart(var1_f, lwd = 2)
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Forecasting

library(ggfortify)
autoplot(var1_f) + geom_hline(yintercept = 0, linetype = "dashed") + theme_bw()
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Forecasting

library(tibbletime)
library(broom)

# estimate rolling VAR with window size = window_length
window_length <- nrow(hpi_ts)
# create rolling VAR function with rollify from tibbletime package
roll_VAR <- rollify(function(LA, RI) {

x <- cbind(LA, RI)
VAR(x, ic = "AIC", lag.max = 8, type = "const")
},

window = window_length, unlist = FALSE)

# estimate rolling VAR model, create 1 period ahead rolling forecasts
var_roll_results <-

hpi_tbl %>%
dplyr::select(msa, date, dly) %>%
spread(msa, dly) %>%
filter(date >= "1976-07-01") %>%
as_tbl_time(index = date) %>%
mutate(VAR.model = roll_VAR(LA,RI)) %>%
filter(!is.na(VAR.model)) %>%
mutate(var_coefs = map(VAR.model, (. %$% map(varresult, tidy, conf.int = TRUE) %>%

map(as.tibble) %>%
bind_rows(.id = "msa"))),

var_f = map(VAR.model, (. %>% predict(n.ahead = 1) %$%
fcst %>%
map(as.tibble) %>%
bind_rows(.id = "msa"))))
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Forecasting
# extract 1 period ahead rolling forecasts
var_roll_f <-

bind_rows(
# actual data
hpi_tbl %>%

dplyr::select(date, msa, dly) %>%
rename(value = dly) %>%
mutate(key = "actual"),

# forecasts
var_roll_results %>%

dplyr::select(date, var_f) %>%
unnest(var_f) %>%
rename(value = fcst) %>%
mutate(key = "forecast",

date = date %m+% months(3))
) %>%
arrange(date, msa)

# plot the 1 period ahead rolling forecasts
var_roll_f %>%

dplyr::filter(date >= "2000-01-01") %>%
mutate(msa.f = factor(msa, labels = c("Los Angeles","Riverside"))) %>%
ggplot(aes(x = date, y = value, col = key, group = key)) +

geom_ribbon(aes(ymin = lower, ymax = upper), color = NA, fill = "steelblue", alpha = 0.2) +
geom_line(size = 0.7) +
geom_point(size = 0.7) +
geom_hline(yintercept = 0, linetype = "dashed") +
scale_color_manual(values = c("black","blue")) +
labs(x = "", y = "",

title = "Rolling one step ahead forecast for House Price Index, quarterly, log change") +
facet_wrap(~ msa.f, scales = "free_y", ncol = 1) +
theme(legend.position = "none")
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Forecasting
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Innovations Accounting

two important tools used to examine relationships among economic variables
I impulse-response analysis: the goal is to track the response of a variable

yi to a one time shock εj,t

I forecast error variance decomposition: the goal is to find the fraction of
the overall fluctuations in yi that is due to shock εj,t

as with forecasting, we will analyze the VAR(1) case but the method can be
generalized for VAR(p) model
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Impulse-Response Functions (IRF)
I goal: obtain response of yi over time to a one time increase in εj,t

I IRFs are constructed using vector moving average (VMA) representation
I consider a reduced form VAR(1)

y t = c+A1y t−1+et

by repeated substitutions

y t = c+A1
(

c+A1y t−2+et−1
)

+et = . . . = µ+
∞∑

h=0

Ah
1et−h

where µ =
∑∞

h=0 Ah
1c is the long run average of y

I since et = B−10 εt we can define Ψh = Ah
1B−10 and write

y t −µ =
∞∑

h=0

Ψhεt−h

I ψh,ij i.e. row i column j element of matrix Ψh shows
I the impact of a unit increase in εj,t−h on yi,t
I the impact of a unit increase in εj,t on yi,t+h

I a plot of ψh,ij as function of h is the impulse-response function plot
I confidence intervals for IRFs - parameters of the VAR model are unknown,

estimated, there is thus uncertainty regarding the response of y to changes in ε
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Impulse-Response Functions (IRF)

I the IRF components Ψh,ij show
∂yi,t+h
∂εj,t

that is, how yi responds over time to
a one time increase in εj

I when constructing the IRF the size of the one time shock in εj is taken to
be one standard deviation σεj

I the plot of the IRF for yi shows the effect εj of as deviations of yi from its
long run equilibrium µi

I because all variables in VAR are weakly stationary, deviations eventually
converge to 0 as the system converges back to the long run equilibrium
given by µ
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Impulse-Response Functions (IRF)

var1_irf <- irf(var1, n.ahead = 40)
par(mfcol = c(2,2), cex = 0.8, mar = c(3,4,2,2))
plot(var1_irf, plot.type = "single", lwd = 2)

LA

Orthogonal Impulse Response from LA

95 % Bootstrap CI,  100 runs

0 3 6 9 12 15 18 21 24 27 30 33 36 39

0.
00

0
0.

00
5

0.
01

0
0.

01
5

R
I

Orthogonal Impulse Response from LA

0 3 6 9 12 15 18 21 24 27 30 33 36 39

0.
00

0
0.

00
5

0.
01

0
0.

01
5

LA

Orthogonal Impulse Response from RI

95 % Bootstrap CI,  100 runs

0 3 6 9 12 15 18 21 24 27 30 33 36 39

0.
00

0
0.

01
0

R
I

Orthogonal Impulse Response from RI

0 3 6 9 12 15 18 21 24 27 30 33 36 39

0.
00

0
0.

01
0

35 / 47



Impulse-Response Functions (IRF)

IRFs for VAR(1) model of house prices in Los Angeles and Riverside show that
I ∆ log pLA

H and ∆ log pLA
H react to εLA in similar way and with similar

magnitude - on impact the price increases by about 1.5% in both markets,
this is followed by a gradual decline but the effects are significant even after
16 quarters (4 years)

I ∆ log pLA
H increases only very little in response to εRI and this response is

not statistically significant since the 95% confidence interval contains 0
I ∆ log pLA

H increases more in response to εRI but this increase is short lived
and the variable converges back within about 3 quarters

I the demand and supply shock in the Los Angeles market thus clearly
dominate the dynamics and the variability of home prices in both markets,
their transmission into the Riverside market is quite strong
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Impulse-Response Functions (IRF)

# arrange IRF data into a tibble to be used with ggplot
var1_irf_tbl <-

var1_irf[1:3] %>%
modify_depth(2, as.tibble) %>%
modify_depth(1, bind_rows, .id = "impulse") %>%
map_df(bind_rows, .id = "key") %>%
gather(response, value, -key, -impulse) %>%
group_by(key, impulse, response) %>%
mutate(lag = row_number()) %>%
ungroup() %>%
spread(key, value)

# plot IRFs using ggplot
ggplot(data = var1_irf_tbl, aes(x = lag, y = irf)) +

geom_ribbon(aes(x = lag, ymin = Lower, ymax = Upper), fill = "lightgray", alpha = .3) +
geom_line() +
geom_hline(yintercept = 0, linetype = "dashed") +
labs(x = "", y = "",

title = "Orthogonal Impulse Response Functions (rows: response, columns: impulse)") +
facet_grid(response ~ impulse, switch = "y")
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Impulse-Response Functions (IRF)
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Forecast Error Variance Decomposition (FEVD)
I goal: find fraction of overall fluctuations in yi that is due to shock εj,t

I we obtained that the h step ahead forecast error of the VAR(1) model is

y t+h−µt+h|t = Ah−1
1 et+1+. . .+A1et+h−1+et+h

I like with IRFs, since et = B−10 εt we define Ψh = Ah
1B−10 and write

y t+h−µt+h|t = Ψh−1εt+1+. . .+Ψ1εt+h−1+Ψ0εt+h

I thus for variable yi the variance of h step ahead forecast error is given by

σ2
yi ,h = var(yt+h−µt+h|t) =

k∑
j=1

σ2
εj

h−1∑
τ=0

Ψ2
τ,ij

and the portion of σ2
yi ,h that is due to shock {εj,t} is

σ2
εj

∑h−1
τ=0 Ψ2

τ,ij∑k
j=1 σ

2
εj

∑h−1
τ=0 Ψ2

τ,ij

I this yields a decomposition of forecast error variance, and provides insight
which shocks are behind the fluctuations of yi
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Forecast Error Variance Decomposition (FEVD)

var1_fevd <- fevd(var1, n.ahead = 40)

decomposition for ∆ log pLA
H

var1_fevd[["LA"]][c(1,4,8,40),]

## LA RI
## [1,] 1.0000000 0.000000000
## [2,] 0.9978296 0.002170428
## [3,] 0.9973050 0.002695011
## [4,] 0.9971590 0.002841018

thus at 1 quarter horizon fluctuations are entirely due to εLA, and at 40 quarters
horizon (i.e. 10 years) more than 99% are due to εLA and less than 1% due to εRI

decomposition for ∆ log pRI
H

var1_fevd[["RI"]][c(1,4,8,40),]

## LA RI
## [1,] 0.4925051 0.5074949
## [2,] 0.7379736 0.2620264
## [3,] 0.7865878 0.2134122
## [4,] 0.8005838 0.1994162

thus at 1 quarter horizon fluctuations are about half and half due to εLA and εLA;
at 40 quarters horizon about 80% are due to εLA and 20% due to εRI
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Forecast Error Variance Decomposition (FEVD)

plot(var1_fevd)
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Forecast Error Variance Decomposition (FEVD)

# arrange FEVD data into a tibble to be used with ggplot
var1_fevd_tbl <-

var1_fevd %>%
modify_depth(1, as.tibble) %>%
map_df(bind_rows, .id = "variable") %>%
gather(shock, value, -variable) %>%
group_by(shock, variable) %>%
mutate(horizon = row_number()) %>%
ungroup()

# plot FEVD using ggplot
ggplot(data = var1_fevd_tbl, aes(x = horizon, y = value, fill = shock)) +

geom_col(position = position_stack(reverse = TRUE)) +
scale_fill_manual(values = c("gray70","gray40")) +
labs(x = "horizon", y = "fraction of overall variance",

title = "Forecast Error Variance Decomposition") +
facet_wrap(~variable, ncol = 1)
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Forecast Error Variance Decomposition (FEVD)
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Reduced Form Errors vs Structural Shocks

note that
I IRFs trace out the response of y t to structural shocks εt , not reduced form

errors et

I FEVD gives the fraction of variance of y t caused by different structural
shocks εt , not reduced form errors et

I since εt = B0et to construct the IRFs and FEVD for a VAR(p) model we
need to know B0, in addition to A1, . . . ,Ap
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Identification of Structural Shocks

Q: Is it possible to recover c0, {Bi}p
i=0 and Σε from c, {Ai}p

i=1 and Σe?

A: Only if we are willing to impose additional restrictions.
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Identification of Structural Shocks

Example: bivariate VAR(1)
I reduced form VAR(1) yields estimates of 9 parameters in c, A1, Σe(

y1,t
y2,t

)
=
(

c1
c2

)
+
(

a1,11 a1,12
a1,21 a1,22

)(
y1,t−1
y2,t−1

)
+
(

e1,t
e2,t

)
Σe =

(
σ21 σ12
σ12 σ22

)
I we are trying to uncover c0, B0, B1, Σε which contain 10 unknown values(
1 b0,12

b0,21 1

)(
y1,t
y2,t

)
=
(

c0,1
c0,2

)
+
(

b1,11 b1,12
b1,21 b1,22

)(
y1,t−1
y2,t−1

)
+
(
ε1,t
ε2,t

)
Σε =

(
σ2ε1 0
0 σ2ε2

)
I one additional restriction on parameters thus needs to be imposed in the VAR(1)
I one possible way to do this is the Choleski decomposition

I impose b0,12 = 0 so that y1,t has contemporaneous effect on y2,t , but y2,t
does not have a contemporaneous effect on y1,t

I this also means that both ε1,t and ε2,t have a contemporaneous effect on
y2,t , but only ε1,t has an effect on y1,t

I this is how vars package constructs IRFs and FEVD shown on previous slides
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Identification of Structural Shocks

general case, a VAR(p) model with k variables
I reduced form has k +pk2+k(k +1)/2 parameters
I structural form has k +(p+1)k2+k parameters
I identification thus requires k(k−1)/2 additional restrictions
I Choleski decomposition: set elements of B0 above main diagonal equal zero
I ordering of variables in the VAR(p) model thus matters:

yi,t is only affected by shocks ε1,t , . . . , εi,t , remaining shocks εi+1,t , . . . , εk,t
have no contemporaneous effect on yi,t and will only affect yi,t′ for t ′ > t
indirectly through their effect on yi+1,t , . . . , yk,t
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