Eco 5316 Time Series Econometrics

Lecture 7 Nonstationary Time Series
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Nonstationary Time Series

a lot of time series in economics and finance are not weakly stationary and

instead
» show linear or exponential trend
» show stochastic trend - grow or fall over time or meander without a
constant long-run mean
» show increasing variance over time
examples
» GDP, consumption, investment, exports, imports, ...
» industrial production, retail sales, ...
P interest rates, foreign exchange rates, stock market indices, prices of
commodities,. . .
» unemployment rate, labor force participation rate, ...
» loans, federal debt, ...
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https://www.quandl.com/data/FRED/GDPC96
https://www.quandl.com/data/FRED/PCECC96
https://www.quandl.com/data/FRED/GPDI
https://www.quandl.com/data/FRED/EXPGSC1
https://www.quandl.com/data/FRED/EXPGSC1
https://www.quandl.com/data/FRED/INDPRO
https://www.quandl.com/data/FRED/RSAFSNA
https://www.quandl.com/data/FRED/GS10
https://www.quandl.com/data/ECB/EURUSD
https://www.quandl.com/data/FRED/WCOILBRENTEU
https://www.quandl.com/data/FRED/WCOILBRENTEU
https://www.quandl.com/data/FRED/UNRATENSA
https://www.quandl.com/data/FRED/CIVPART
https://www.quandl.com/data/FRED/BUSLOANSNSA
https://www.quandl.com/data/FRED/GFDEBTN

Nonstationary Time Series

A very slowly decaying ACF suggests nonstationarity and presence of
deterministic or stochastic trend in the time series, e.g. for y: = yi—1+¢€¢
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Transformations

Detrending - regressing y: on intercept and time trend - proper treatment id
{y+} is trend stationary

Differencing - proper treatment if {y;} is difference stationary

Log transformation and differencing - proper treatment if {y:} grows

exponentially and shows increasing variability over time
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Trend-Stationary Time Series

> consider times series {y:} that follows

Yt = atputter
where ¢, is a weakly stationary time series
> E(y:) = a+ut and var(y:) = var(e:) = const.
since E(yt) # const. time series {y:} is not weakly stationary

» {y:} can however be made stationary by removing time trend using a
regression of y, on constant and time

» {y.} is trend stationary time series
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Difference-Stationary Time Series

Random Walk

> suppose ¢; is white noise, consider a version of AR(1) model with ¢9 = 0

and (]51 =1
Yt = Yt—1+Er

or, by repeated substitution

t
Yyt = OH‘Z €j
j=1

where o = o

E(y:) = a and var(y:) = UGT(Z§:1 ;) = to?

» since var(y:) # const. time series {y:} is not weakly stationary

» {y:} can not be made difference stationary by removing time trend using a

v

A\

regression of y; on constant and time
{y+} can however be made stationary by differencing

{y+} is difference stationary time series
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Difference stationary series vs. Trend stationary series

five simulations of trend stationary time series vs random walk

Ye= Ht+ @y + & V= Yiats
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Difference-Stationary Time Series

Random Walk with Drift
> suppose € is white noise, consider a version of AR(1) model with ¢1 =1
Yt = ptYi—1+¢e

and by repeated substitution

t
Yt = O¢+lﬂf+z €j

j=1
where a = yo
t 2
> E(y:) = a+put and var(y:) = var(zjzl gj) = toZ
» E(y:) # const. and var(y:) # const. so {y:} is not weakly stationary

» {y:} can not be made difference stationary by removing time trend using a
regression of y; on constant and time

A\

{y+} can however be made stationary by differencing

v

{y+} is difference stationary time series
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Difference stationary series vs. Trend stationary series

It is important to be able to distinguish between the two cases:

» with trend stationary series shocks have transitory effects
» with difference stationary series shocks have permanent effects
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In addition, as we will see later additional issues arise with difference stationary
series in the context of multivariate time series analysis
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Difference stationary series vs. Trend stationary series

U.S. GDP and the effect of 2008-2009 recession

permanent effect or structural break?

Real Gross Domestic Product Log of Real Gross Domestic Product
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Unit-root Time Series

Autoregressive Integrated Moving-Average (ARIMA) Models

» non-stationary time series is said to contain a unit root or to be integrated
of order one, I(1), if it can be made stationary by applying first differences

> time series {y:} follows an ARIMA(p, 1, q) process if Ay: = (1—L)y:
follows a stationary and invertible ARMA(p, ¢) process, so that

¢(L)(1—L)y: = p+06(L)et
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Unit-root Time Series

Autoregressive Integrated Moving-Average (ARIMA) Models

| 2

>

non-stationary time series is said to be integrated of order d, I(d), if it
can be made stationary by differencing d times

time series {y:} follows an ARIMA(p, d, q) process if A%y, = (1—L)%y,
follows a stationary and invertible ARMA(p, q) process, thus

G(L)(1—L) "y = p+0(L)e:

note that pure random walk and random walk with drift are special cases,
an ARIMA(0,1,0)

(1-L)y: = ptee
with = 0 in case of pure random walk and p # 0 in case of random walk
with drift
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Example 1: Difference stationary series vs. Trend stationary series

it is often very hard to distinguish random walk and trend stationary model:
150 vs 5000 observations of
random walk vs. trend stationary AR(1) with u = 0.15, ¢1 = 0.95

Yi=Yaté Yy = Ht + X where X, = @ Xy + &
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Example 1: Difference stationary series vs. Trend stationary series

ACF and PACF for 150 observations of y; under
random walk vs. trend stationary AR(1) with p = 0.15, ¢ = 0.95
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Example 1: Difference stationary series vs. Trend stationary series

ACF and PACF for 150 observations of first difference Ay; under

random walk vs. trend stationary AR(1) with p = 0.15, ¢ = 0.95

sample ACF

sample PACF

Yo = Yt Y1 = Ht + X, where X, = @X1 + &
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Example 1: Difference stationary series vs. Trend stationary series

random walk vs. trend stationary AR(1) with p = 0.15, ¢ = 0.95

## Series: yDS[1:T]
## ARIMA(1,0,0) with non-zero mean

##

## Coefficients:

## arl mean
## 0.9971 16.279
## s.e. 0.0038 12.711
##

## sigma”2 estimated as 1.138: log likelihood=-224.1
## AIC=454.19  AICc=454.36 BIC=463.22

## Series: yTS[1:T]
## ARIMA(1,0,0) with non-zero mean

##

## Coefficients:

## arl mean
## 0.9878 13.7733
## s.e. 0.0123 4.7683
##

## sigma”2 estimated as 1.065: 1log likelihood=-218.44
## AIC=442.87  AICc=443.04 BIC=451.91
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Example 1: Difference stationary series vs. Trend stationary series
random walk vs. trend stationary AR(1) with p = 0.15, ¢ = 0.95
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Example 2: Random Walk vs Highly Persistent AR(1)

also very hard to distinguish random walk model and highly persistent AR(1):
random walk I(1) vs. AR(1) with ¢1 = 0.98
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Example 2: Random Walk vs Highly Persistent AR(1)

ACF and PACF for y; under

random walk vs. trend stationary AR(1) with ¢, = 0.98
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Example 2: Random Walk vs Highly Persistent AR(1)

ACF and PACEF for first difference Ay under

random walk vs. trend stationary AR(1) with ¢, = 0.98

sample ACF

sample PACF
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Example 2: Random Walk vs Highly Persistent AR(1)

random walk vs. trend stationary AR(1) with ¢ = 0.98

## Series: yIl
## ARIMA(1,0,0) with non-zero mean

##

## Coefficients:

## arl mean
## 0.9885 0.4748
## s.e. 0.0060 3.2424
##

## sigma”2 estimated as 1.034: log likelihood=-863.67
## AIC=1733.33 AICc=1733.37 BIC=1746.53

## Series: yAR1
## ARIMA(1,0,0) with non-zero mean

##

## Coefficients:

## arl mean
## 0.9760 -0.2034
## s.e. 0.0087 1.6538
##

## sigma”2 estimated as 1.054: log likelihood=-867.77
## AIC=1741.55  AICc=1741.59 BIC=1754.74

2140



Example 1: Difference stationary series vs. Trend stationary series
random walk vs. trend stationary AR(1) with p = 0.15, ¢ = 0.98
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Unit Root and Stationarity Tests

» two types of tests for nonstationarity

> unit root tests: Hy is difference stationarity, H 4 is trend stationarity
> stationarity tests: Hy is trend stationary, H 4 is difference stationarity

» in general, the approach of these tests is to consider {y:} as a sum
Yyt = dit+2et+es

where d; is a deterministic component (time trend, seasonal component,
etc.), z: is a stochastic trend component and ¢, is a stationary process

P tests then investigate whether z; is present
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Unit Root and Stationarity Tests

Augmented Dickey-Fuller (ADF) test
» main idea: suppose {y:} follows AR(1)

Yt = Pr1yi—1+¢¢

then
Ay = yyi—1+€¢
where v = ¢1—1

» if {y:} is I(1) then v = 0, otherwise v < 0
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Unit Root and Stationarity Tests

Augmented Dickey-Fuller (ADF) test

> unit root test Ho: time series {y:} has a unit root H4: time series {y:} is
stationary (with zero mean - model A), level stationary (with non-zero
mean - model B) or trend stationary (stationary around a deterministic
trend - model C)

p—1
model A Ay = vyt_lJrZ piAyt—i+ex
2 1;771
model B Ay = vyt71+u+z piAyt—i+et
=1
p—1
model C Ay, = ’}’yt—l‘f',u"‘ﬁt-f—z Pilyi—i+et
=1

» if {y:} contains a unit root/is difference stationary, 4 will be insignificant

> test Ho : v = 0 against Ha : v < 0; if ¢-statistics for «y is lower than critical
values we reject the null hypothesis of a unit root (one-sided left-tailed test)
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Unit Root and Stationarity Tests

Augmented Dickey-Fuller (ADF) test

If v <0 then

» under model A y; fluctuates around zero

» under model B if u # 0 then y; fluctuates around a non-zero mean

» under model Cif u # 0, 8 # 0 then y; fluctuates around linear
deterministic trend St

If v =0 then

» under model A y: contains stochastic trend only
» under model B if x # 0 then y; contains both a linear deterministic trend

ut and a stochastic trend
» under model Cif u # 0, B # 0 then y; contains a quadratic deterministic
trend 5t2 and a stochastic trend
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Unit Root and Stationarity Tests

Augmented Dickey-Fuller (ADF) test

| 2

lags Ay:—; used in the test are in order to control for the possible higher
order autocorrelation

number of lags can be chosen by a simple procedure: start with some
reasonably large number of lags pma. and check the significance of the
coefficient on the highest lag with a t-test; if insignificant at the 10 % level,
reduce the number of lags by one, proceed in this way until achieving
significance

» an alternative approach: select the number of lags p to minimize AIC or BIC

» if p is too small errors will be serially correlated which will bias the test, if p

is too large power of the test will suffer

> it is better to err on the side of including too many lags

» ADF has very low power against 1(0) alternatives that are close to being

I(1), it can’t distinguish highly persistent stationary processes from
nonstationary processes well
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Unit Root and Stationarity Tests

Augmented Dickey-Fuller (ADF) test

» including constant and trend in the regression also weakens the test (model
C is thus the weakest on, model A the strongest one)

> if possible, we want to exclude the constant and/or the trend, but if they
are incorrectly excluded, the test will be biased

» in addition to providing critical values to testing whether v = 0, Dickey and
Fuller also provide critical values for the following three F tests:

» ¢, statistic for model B to test Hy : v =pu =10
» 9 statistic for model Cto test Hy: vy =pu=£=0
> 3 statistic for model C to test Ho: v = =0

» these allow us to test whether we can restrict the test

28 /40



Proposed Full Procedure for ADF test
Step 1. estimate model C and use 73 statistic to test Ho: v =0
» if Hy can not be rejected continue to Step 2
» if Hy is rejected conclude that y; is trend stationary

Step 2. use ¢3 statistic to test Hp: v =5=0
» if Hp can not be rejected continue to step 3
» if Hy is rejected estimate restricted model
Ay = M+ﬁt+zf:_11 Pilyi—i+e;
and use ¢ statistic to test Hyp : =0
- if Ho can not be rejected continue to Step 3
- if Hp is rejected conclude that y: is difference stationary with quadratic

trend

Step 3. estimate model B and use 7» statistic to test Hyp: v =0
» if Hy can not be rejected continue to Step 4
» if Hy is rejected conclude that y; is trend stationary
Step 4. use ¢, statistic to test Hy: y=pu =0
» if Hp can not be rejected continue to step 5
» if Hy is rejected estimate restricted model Ay, = H+Zf;11 PilAyt_i+et
and
use standard ¢ statistic to test Ho : 4 =0
- if Ho can not be rejected continue to Step 5
- if Hy is rejected conclude that y; is random walk with drift

Step 5. estimate model A and use 7 statistic to test Hp: v =0 20/40



Example 1: Difference stationary series vs. Trend stationary series contd.

library(urca)

ur.

##
##
##
##
##
##
##
##
##
##
##
#:
##
##
##
##
##
#:
##
##
##
##
##
##
#
##
##
##
##
##
##
##
##
##
##
##

#*

*

*

df(yTS, type = "trend", selectlags = "AIC") %> summary()

# Augmented Dickey-Fuller Test Unit Root Test #
Test regression trend
Call:
Im(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
Residuals:

Min 1Q Median 3Q Max
-3.6246 -0.6734 -0.0073 0.6816 4.3585
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2156769 0.0294252 7.330 2.68e-13 *xx
z.lag.1 -0.0562692 0.0047070 -11.954 < 2e-16 **x
tt 0.0084263 0.0007048 11.955 < 2e-16 *¥x*
z.diff.lag 0.0119032 0.0141433 0.842 0.4
Signif. codes: O '#**x' 0.001 '*x*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.018 on 4994 degrees of freedom

Multiple R-squared: 0.02808, Adjusted R-squared: 0.02749
F-statistic: 48.09 on 3 and 4994 DF, p-value: < 2.2e-16

Value of test-statistic is: -11.9543 83.6306 71.4597

Critical values for test statistics:
ipct S5pct 10pct

tau3 -3.96 -3.41 -3.12

phi2 6.09 4.68 4.03

phi3 8.27 6.25 5.34
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Example 1: Difference stationary series vs. Trend stationary series contd.

ur.

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#:
##
##
##
##
##
##
#
##
##
##
##
##
##
##
##
##
##
##

*

*

df (yTS[1:150], type = "trend", selectlags = "AIC") %>% summary()

# Augmented Dickey-Fuller Test Unit Root Test #
Test regression trend

Call:

Im(formula = z.diff - z.lag.1 + 1 + tt + z.diff.lag)
Residuals:

Min 1Q  Median 3Q Max
-2.70057 -0.67726 -0.06942 0.71670 2.36169
Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 0.657770 0.284392 2.313  0.0221 *

z.lag.1 -0.088331 0.035947 -2.457 0.0152 *

tt 0.009033 0.004035 2.239 0.0267 *
z.diff.lag -0.039590 0.082503 -0.480 0.6320

Signif. codes: O '***x' 0.001 '**' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.003 on 144 degrees of freedom

Multiple R-squared: 0.04721,  Adjusted R-squared: 0.02736
F-statistic: 2.378 on 3 and 144 DF, p-value: 0.0723

Value of test-statistic is: -2.4573 2.6964 3.0334

Critical values for test statistics:
ipct S5pct 10pct

tau3 -3.99 -3.43 -3.13

phi2 6.22 4.75 4.07

phi3 8.43 6.49 5.47
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Unit Root and Stationarity Tests

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test

| 4

>

stationarity test Ho: {y:} is stationary (either mean stationary or trend
stationary) Ha: {y:} is difference stationary (has a unit root)

main idea: decompose time series {y.} as
Yyt = de+2t+ey

where d; is the deterministic trend, z; is random walk z; = z;—14vy, vy is
white noise (iid E(v¢) = 0, var(v) = o2 ), and &, stationary error (i.e.
I(0) but not necessarily white noise)

stationarity of {y:} depends on &2, we can run a test
HO : 0'12, =0

against
Hy 0'12, >0

using Lagrange multiplier (LM) statistic
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Unit Root and Stationarity Tests

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test
» to perform KPSS test we estimate
model A Y = p+es
model B Yy = p+Pt+es

model A is used if Hy is mean stationarity, model B is used if Hp is trend
stationarity

» using residuals e; we construct LM statistics n

T
11 )
1= 25
=1
where Sy = Zt

;—1 € is the partial sum process of the residuals e; and 52 is
an estimator of the long-run variance of the residuals e;.

» KPSS test is a one-sided right-tailed test: we reject Hy at a% level if n is
greater than 100(1—«)% percentile from the appropriate asymptotic
distribution
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Example 1: Difference stationary series vs. Trend stationary series contd.

ur

##
##

##
##
##
##
##
##
##
##
##
u.

H

##
##
##
##
##
##
##
##
##
##
##
##

.kpss(yTS, type = "tau", lags = "long") %>% summary()

# KPSS Unit Root Test #

Test is of type: tau with 31 lags.
Value of test-statistic is: 0.1483

Critical value for a significance level of:
10pct 5pct 2.5pct 1pct
critical values 0.119 0.146 0.176 0.216

.kpss(yTS[1:150], type = "tau", lags = "long") %>% summary()

# KPSS Unit Root Test #

Test is of type: tau with 13 lags.
Value of test-statistic is: 0.1809
Critical value for a significance level of:

10pct 5pct 2.5pct 1pct
critical values 0.119 0.146 0.176 0.216
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Example 1: Difference stationary series vs. Trend stationary series contd.

ur

##
##

##
##
##
##
##
##
##
##
##
u.

H

##
##
##
##
##
##
##
##
##
##
##
##

.kpss(yDS, type = "tau", lags = "long") %>% summary()

# KPSS Unit Root Test #

Test is of type: tau with 31 lags.
Value of test-statistic is: 1.9601

Critical value for a significance level of:
10pct 5pct 2.5pct 1pct
critical values 0.119 0.146 0.176 0.216

.kpss(yDS[1:150], type = "tau", lags = "long") %>’ summary()

# KPSS Unit Root Test #

Test is of type: tau with 13 lags.
Value of test-statistic is: 0.1412
Critical value for a significance level of:

10pct 5pct 2.5pct 1pct
critical values 0.119 0.146 0.176 0.216
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Unit Root and Stationarity Tests

Phillips-Perron (PP) test
» an alternative to ADF test, estimates one of the models
model A Ay = yyi—1+er
model B Ayr = YYi—1+pu+es
model C Ay = yyi—1+p+Bt+es
and tests Hy : v = 0 against Hq : v <0

» unlike ADF uses non-parametric correction based on Newey-West
heteroskedasticity and autocorrelation consistent (HAC) estimators to
account for possible autocorrelation in e;

» advantage over the ADF: PP tests are robust to general forms of
heteroskedasticity and do not require to choose number of lags in the test
regression

» asymptotically identical to ADF test, but likely inferior in small samples

» like ADF also not very powerful at distinguishing stationary near unit root
series for unit root series
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Unit Root and Stationarity Tests

Elliot, Rothenberg and Stock (ERS) tests

» two efficient unit root tests with substantially higher power than the ADF or
PP tests especially when ¢; is close to 1

» P-test: optimal for point alternative ¢1 = 1—¢/T

» DF-GLS test: main idea - estimate test regression as in model A of ADF
but with detrended time series y,
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Example 1: Difference stationary series vs. Trend stationary series contd.

ur.

##
##
##
##
##
##
#:
##
##
##
##
##
##

#*

ur.

##
##
#
##
##
##
#;
##
##
##
#
##
##

*

*

*

ers(yTS, type ="P-test", model = "trend") %>% summary()

# Elliot, Rothenberg and Stock Unit Root Test #

Test of type P-test
detrending of series with intercept and trend

Value of test-statistic is: 0.5048

Critical values of P-test are:
ipct Spet 10pct

critical values 3.96 5.62 6.89

ers(yTS[1:150], type = "P-test", model = "trend") %>% summary()

# Elliot, Rothenberg and Stock Unit Root Test #

Test of type P-test
detrending of series with intercept and trend

Value of test-statistic is: 8.2584
Critical values of P-test are:

ipct Spct 10pct
critical values 4.05 5.66 6.86
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Example 1: Difference stationary series vs. Trend stationary series contd.

ur.

##
##
##
##
##
##
#:
##
##
##
##
##
#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

*

*

ers(yTS, type = "DF-GLS", model = "trend") %> summary()

# Elliot, Rothenberg and Stock Unit Root Test #
Test of type DF-GLS
detrending of series with intercept and trend
Call:
Im(formula = dfgls.form, data = data.dfgls)
Residuals:

Min 1Q Median 3Q Max
-3.5735 -0.7132 -0.0517 0.6432 4.2731
Coefficients:

Estimate Std. Error t value Pr(>|tl)

yd.lag -0.041303 0.004285 -9.639 < 2e-16 *xx
yd.diff.lagl 0.003327 0.014217 0.234 0.81498
yd.diff.lag2 -0.013141 0.014169 -0.927 0.35374
yd.diff.lag3 -0.040292 0.014149 -2.848 0.00442 *x
yd.diff.lagd 0.002834 0.014147 0.200 0.84125
Signif. codes: O 'xxx' 0.001 '#*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.02 on 4990 degrees of freedom
Multiple R-squared: 0.02337,  Adjusted R-squared: 0.02239
F-statistic: 23.88 on 5 and 4990 DF, p-value: < 2.2e-16

Value of test-statistic is: -9.6387
Critical values of DF-GLS are:

ipct S5pct 10pct
critical values -3.48 -2.89 -2.57
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Example 1: Difference stationary series vs. Trend stationary series contd.

ur.

##
##
##
##
##
##
#:
##
##
##
##
##
#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

*

*

ers(yTS[1:150], type = "DF-GLS", model = "trend") %>% summary()

# Elliot, Rothenberg and Stock Unit Root Test #
Test of type DF-GLS

detrending of series with intercept and trend
Call:

Im(formula = dfgls.form, data = data.dfgls)
Residuals:

Min 1Q Median 3Q Max
-2.56982 -0.65834 -0.03218 0.73765 2.39730
Coefficients:

Estimate Std. Error t value Pr(>|tl)
yd.lag -0.082652 0.036050 -2.293 0.0234 *
yd.diff.lagl -0.027003 0.084611 -0.319 0.7501
yd.diff.lag2 -0.004045 0.083743 -0.048 0.9615
yd.diff.lag3 -0.055587 0.083414 -0.666 0.5063
yd.diff.lagd 0.092734 0.082401 1.125 0.2623
Signif. codes: O 'xxx' 0.001 '#%' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9947 on 140 degrees of freedom
Multiple R-squared: 0.05753,  Adjusted R-squared: 0.02387
F-statistic: 1.709 on 5 and 140 DF, p-value: 0.1364

Value of test-statistic is: -2.2927
Critical values of DF-GLS are:

ipct S5pct 10pct
critical values -3.46 -2.93 -2.64
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