
Eco 5316 Time Series Econometrics
Lecture 7 Nonstationary Time Series
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Nonstationary Time Series

a lot of time series in economics and finance are not weakly stationary and
instead
I show linear or exponential trend
I show stochastic trend - grow or fall over time or meander without a

constant long-run mean
I show increasing variance over time

examples
I GDP, consumption, investment, exports, imports, . . .
I industrial production, retail sales, . . .
I interest rates, foreign exchange rates, stock market indices, prices of

commodities,. . .
I unemployment rate, labor force participation rate, . . .
I loans, federal debt, . . .
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https://www.quandl.com/data/FRED/GDPC96
https://www.quandl.com/data/FRED/PCECC96
https://www.quandl.com/data/FRED/GPDI
https://www.quandl.com/data/FRED/EXPGSC1
https://www.quandl.com/data/FRED/EXPGSC1
https://www.quandl.com/data/FRED/INDPRO
https://www.quandl.com/data/FRED/RSAFSNA
https://www.quandl.com/data/FRED/GS10
https://www.quandl.com/data/ECB/EURUSD
https://www.quandl.com/data/FRED/WCOILBRENTEU
https://www.quandl.com/data/FRED/WCOILBRENTEU
https://www.quandl.com/data/FRED/UNRATENSA
https://www.quandl.com/data/FRED/CIVPART
https://www.quandl.com/data/FRED/BUSLOANSNSA
https://www.quandl.com/data/FRED/GFDEBTN


Nonstationary Time Series

A very slowly decaying ACF suggests nonstationarity and presence of
deterministic or stochastic trend in the time series, e.g. for yt = yt−1+εt
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Transformations

Detrending - regressing yt on intercept and time trend - proper treatment id
{yt} is trend stationary

Differencing - proper treatment if {yt} is difference stationary

Log transformation and differencing - proper treatment if {yt} grows
exponentially and shows increasing variability over time
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Trend-Stationary Time Series

I consider times series {yt} that follows

yt = α+µt+εt

where εt is a weakly stationary time series
I E(yt) = α+µt and var(yt) = var(εt) = const.

I since E(yt) 6= const. time series {yt} is not weakly stationary
I {yt} can however be made stationary by removing time trend using a

regression of yt on constant and time
I {yt} is trend stationary time series
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Difference-Stationary Time Series

Random Walk
I suppose εt is white noise, consider a version of AR(1) model with φ0 = 0

and φ1 = 1
yt = yt−1+εt

or, by repeated substitution

yt = α+
t∑

j=1

εj

where α = y0

I E(yt) = α and var(yt) = var(
∑t

j=1 εj) = tσ2
ε

I since var(yt) 6= const. time series {yt} is not weakly stationary
I {yt} can not be made difference stationary by removing time trend using a

regression of yt on constant and time
I {yt} can however be made stationary by differencing
I {yt} is difference stationary time series
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Difference stationary series vs. Trend stationary series

five simulations of trend stationary time series vs random walk
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Difference-Stationary Time Series

Random Walk with Drift
I suppose εt is white noise, consider a version of AR(1) model with φ1 = 1

yt = µ+yt−1+εt

and by repeated substitution

yt = α+µt+
t∑
j=1

εj

where α = y0

I E(yt) = α+µt and var(yt) = var(
∑t

j=1 εj) = tσ2
ε

I E(yt) 6= const. and var(yt) 6= const. so {yt} is not weakly stationary
I {yt} can not be made difference stationary by removing time trend using a

regression of yt on constant and time
I {yt} can however be made stationary by differencing
I {yt} is difference stationary time series
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Difference stationary series vs. Trend stationary series

It is important to be able to distinguish between the two cases:
I with trend stationary series shocks have transitory effects
I with difference stationary series shocks have permanent effects
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In addition, as we will see later additional issues arise with difference stationary
series in the context of multivariate time series analysis
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Difference stationary series vs. Trend stationary series

U.S. GDP and the effect of 2008-2009 recession

permanent effect or structural break?
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Unit-root Time Series

Autoregressive Integrated Moving-Average (ARIMA) Models
I non-stationary time series is said to contain a unit root or to be integrated

of order one, I(1), if it can be made stationary by applying first differences
I time series {yt} follows an ARIMA(p, 1, q) process if ∆yt = (1−L)yt

follows a stationary and invertible ARMA(p, q) process, so that

φ(L)(1−L)yt = µ+θ(L)εt
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Unit-root Time Series

Autoregressive Integrated Moving-Average (ARIMA) Models
I non-stationary time series is said to be integrated of order d, I(d), if it

can be made stationary by differencing d times
I time series {yt} follows an ARIMA(p, d, q) process if ∆dyt = (1−L)dyt

follows a stationary and invertible ARMA(p, q) process, thus

φ(L)(1−L)dyt = µ+θ(L)εt

I note that pure random walk and random walk with drift are special cases,
an ARIMA(0, 1, 0)

(1−L)yt = µ+εt
with µ = 0 in case of pure random walk and µ 6= 0 in case of random walk
with drift
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Example 1: Difference stationary series vs. Trend stationary series

it is often very hard to distinguish random walk and trend stationary model:

150 vs 5000 observations of

random walk vs. trend stationary AR(1) with µ = 0.15, φ1 = 0.95
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Example 1: Difference stationary series vs. Trend stationary series

ACF and PACF for 150 observations of yt under

random walk vs. trend stationary AR(1) with µ = 0.15, φ1 = 0.95
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Example 1: Difference stationary series vs. Trend stationary series

ACF and PACF for 150 observations of first difference ∆yt under

random walk vs. trend stationary AR(1) with µ = 0.15, φ1 = 0.95
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Example 1: Difference stationary series vs. Trend stationary series

random walk vs. trend stationary AR(1) with µ = 0.15, φ1 = 0.95
## Series: yDS[1:T]
## ARIMA(1,0,0) with non-zero mean
##
## Coefficients:
## ar1 mean
## 0.9971 16.279
## s.e. 0.0038 12.711
##
## sigma^2 estimated as 1.138: log likelihood=-224.1
## AIC=454.19 AICc=454.36 BIC=463.22

## Series: yTS[1:T]
## ARIMA(1,0,0) with non-zero mean
##
## Coefficients:
## ar1 mean
## 0.9878 13.7733
## s.e. 0.0123 4.7683
##
## sigma^2 estimated as 1.065: log likelihood=-218.44
## AIC=442.87 AICc=443.04 BIC=451.91
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Example 1: Difference stationary series vs. Trend stationary series
random walk vs. trend stationary AR(1) with µ = 0.15, φ1 = 0.95

Inverse AR roots
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Example 2: Random Walk vs Highly Persistent AR(1)

also very hard to distinguish random walk model and highly persistent AR(1):

random walk I(1) vs. AR(1) with φ1 = 0.98

yt = yt−1+εt
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Example 2: Random Walk vs Highly Persistent AR(1)

ACF and PACF for yt under

random walk vs. trend stationary AR(1) with φ1 = 0.98
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Example 2: Random Walk vs Highly Persistent AR(1)

ACF and PACF for first difference ∆yt under

random walk vs. trend stationary AR(1) with φ1 = 0.98
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Example 2: Random Walk vs Highly Persistent AR(1)

random walk vs. trend stationary AR(1) with φ1 = 0.98
## Series: yI1
## ARIMA(1,0,0) with non-zero mean
##
## Coefficients:
## ar1 mean
## 0.9885 0.4748
## s.e. 0.0060 3.2424
##
## sigma^2 estimated as 1.034: log likelihood=-863.67
## AIC=1733.33 AICc=1733.37 BIC=1746.53

## Series: yAR1
## ARIMA(1,0,0) with non-zero mean
##
## Coefficients:
## ar1 mean
## 0.9760 -0.2034
## s.e. 0.0087 1.6538
##
## sigma^2 estimated as 1.054: log likelihood=-867.77
## AIC=1741.55 AICc=1741.59 BIC=1754.74
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Example 1: Difference stationary series vs. Trend stationary series
random walk vs. trend stationary AR(1) with µ = 0.15, φ1 = 0.98

Inverse AR roots
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Unit Root and Stationarity Tests

I two types of tests for nonstationarity
I unit root tests: H0 is difference stationarity, HA is trend stationarity
I stationarity tests: H0 is trend stationary, HA is difference stationarity

I in general, the approach of these tests is to consider {yt} as a sum

yt = dt+zt+εt

where dt is a deterministic component (time trend, seasonal component,
etc.), zt is a stochastic trend component and εt is a stationary process

I tests then investigate whether zt is present
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Unit Root and Stationarity Tests

Augmented Dickey-Fuller (ADF) test
I main idea: suppose {yt} follows AR(1)

yt = φ1yt−1+εt

then
∆yt = γyt−1+εt

where γ = φ1−1
I if {yt} is I(1) then γ = 0, otherwise γ < 0
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Unit Root and Stationarity Tests

Augmented Dickey-Fuller (ADF) test
I unit root test H0: time series {yt} has a unit root HA: time series {yt} is

stationary (with zero mean - model A), level stationary (with non-zero
mean - model B) or trend stationary (stationary around a deterministic
trend - model C)

model A ∆yt = γyt−1+
p−1∑
i=1

ρi∆yt−i+et

model B ∆yt = γyt−1+µ+
p−1∑
i=1

ρi∆yt−i+et

model C ∆yt = γyt−1+µ+βt+
p−1∑
i=1

ρi∆yt−i+et

I if {yt} contains a unit root/is difference stationary, γ̂ will be insignificant
I test H0 : γ = 0 against HA : γ < 0; if t-statistics for γ is lower than critical

values we reject the null hypothesis of a unit root (one-sided left-tailed test)
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Unit Root and Stationarity Tests

Augmented Dickey-Fuller (ADF) test

If γ < 0 then
I under model A yt fluctuates around zero
I under model B if µ 6= 0 then yt fluctuates around a non-zero mean
I under model C if µ 6= 0, β 6= 0 then yt fluctuates around linear

deterministic trend βt

If γ = 0 then
I under model A yt contains stochastic trend only
I under model B if µ 6= 0 then yt contains both a linear deterministic trend
µt and a stochastic trend

I under model C if µ 6= 0, β 6= 0 then yt contains a quadratic deterministic
trend βt2 and a stochastic trend
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Unit Root and Stationarity Tests

Augmented Dickey-Fuller (ADF) test
I lags ∆yt−i used in the test are in order to control for the possible higher

order autocorrelation
I number of lags can be chosen by a simple procedure: start with some

reasonably large number of lags pmax and check the significance of the
coefficient on the highest lag with a t-test; if insignificant at the 10 % level,
reduce the number of lags by one, proceed in this way until achieving
significance

I an alternative approach: select the number of lags p to minimize AIC or BIC
I if p is too small errors will be serially correlated which will bias the test, if p

is too large power of the test will suffer
I it is better to err on the side of including too many lags
I ADF has very low power against I(0) alternatives that are close to being
I(1), it can’t distinguish highly persistent stationary processes from
nonstationary processes well
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Unit Root and Stationarity Tests

Augmented Dickey-Fuller (ADF) test
I including constant and trend in the regression also weakens the test (model

C is thus the weakest on, model A the strongest one)
I if possible, we want to exclude the constant and/or the trend, but if they

are incorrectly excluded, the test will be biased
I in addition to providing critical values to testing whether γ = 0, Dickey and

Fuller also provide critical values for the following three F tests:
I φ1 statistic for model B to test H0 : γ = µ = 0
I φ2 statistic for model C to test H0 : γ = µ = β = 0
I φ3 statistic for model C to test H0 : γ = β = 0

I these allow us to test whether we can restrict the test
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Proposed Full Procedure for ADF test
Step 1. estimate model C and use τ3 statistic to test H0: γ = 0
I if H0 can not be rejected continue to Step 2
I if H0 is rejected conclude that yt is trend stationary

Step 2. use φ3 statistic to test H0: γ = β = 0
I if H0 can not be rejected continue to step 3
I if H0 is rejected estimate restricted model

∆yt = µ+βt+
∑p−1

i=1 ρi∆yt−i+et
and use t statistic to test H0 : β = 0
- if H0 can not be rejected continue to Step 3
- if H0 is rejected conclude that yt is difference stationary with quadratic

trend
Step 3. estimate model B and use τ2 statistic to test H0: γ = 0
I if H0 can not be rejected continue to Step 4
I if H0 is rejected conclude that yt is trend stationary

Step 4. use φ1 statistic to test H0: γ = µ = 0
I if H0 can not be rejected continue to step 5
I if H0 is rejected estimate restricted model ∆yt = µ+

∑p−1
i=1 ρi∆yt−i+et

and
use standard t statistic to test H0 : µ = 0
- if H0 can not be rejected continue to Step 5
- if H0 is rejected conclude that yt is random walk with drift

Step 5. estimate model A and use τ1 statistic to test H0: γ = 0
I if H0 can not be rejected conclude that yt is random walk
I if H0 is rejected conclude that yt is trend stationary
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Example 1: Difference stationary series vs. Trend stationary series contd.
library(urca)
ur.df(yTS, type = "trend", selectlags = "AIC") %>% summary()

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6246 -0.6734 -0.0073 0.6816 4.3585
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2156769 0.0294252 7.330 2.68e-13 ***
## z.lag.1 -0.0562692 0.0047070 -11.954 < 2e-16 ***
## tt 0.0084263 0.0007048 11.955 < 2e-16 ***
## z.diff.lag 0.0119032 0.0141433 0.842 0.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.018 on 4994 degrees of freedom
## Multiple R-squared: 0.02808, Adjusted R-squared: 0.02749
## F-statistic: 48.09 on 3 and 4994 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -11.9543 83.6306 71.4597
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -3.96 -3.41 -3.12
## phi2 6.09 4.68 4.03
## phi3 8.27 6.25 5.34
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Example 1: Difference stationary series vs. Trend stationary series contd.
ur.df(yTS[1:150], type = "trend", selectlags = "AIC") %>% summary()

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.70057 -0.67726 -0.06942 0.71670 2.36169
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.657770 0.284392 2.313 0.0221 *
## z.lag.1 -0.088331 0.035947 -2.457 0.0152 *
## tt 0.009033 0.004035 2.239 0.0267 *
## z.diff.lag -0.039590 0.082503 -0.480 0.6320
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.003 on 144 degrees of freedom
## Multiple R-squared: 0.04721, Adjusted R-squared: 0.02736
## F-statistic: 2.378 on 3 and 144 DF, p-value: 0.0723
##
##
## Value of test-statistic is: -2.4573 2.6964 3.0334
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -3.99 -3.43 -3.13
## phi2 6.22 4.75 4.07
## phi3 8.43 6.49 5.47
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Unit Root and Stationarity Tests

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test
I stationarity test H0: {yt} is stationary (either mean stationary or trend

stationary) HA: {yt} is difference stationary (has a unit root)
I main idea: decompose time series {yt} as

yt = dt+zt+εt

where dt is the deterministic trend, zt is random walk zt = zt−1+νt, νt is
white noise (iid E(νt) = 0, var(νt) = σ2

ν ), and εt stationary error (i.e.
I(0) but not necessarily white noise)

I stationarity of {yt} depends on σ2
ν , we can run a test

H0 : σ2
ν = 0

against
HA : σ2

ν > 0

using Lagrange multiplier (LM) statistic
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Unit Root and Stationarity Tests

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test
I to perform KPSS test we estimate

model A yt = µ+et
model B yt = µ+βt+et

model A is used if H0 is mean stationarity, model B is used if H0 is trend
stationarity

I using residuals et we construct LM statistics η

η = 1
T 2

1
s2

T∑
t=1

S2
t

where St =
∑t

i=1 ei is the partial sum process of the residuals et and s2 is
an estimator of the long-run variance of the residuals et.

I KPSS test is a one-sided right-tailed test: we reject H0 at α% level if η is
greater than 100(1−α)% percentile from the appropriate asymptotic
distribution
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Example 1: Difference stationary series vs. Trend stationary series contd.

ur.kpss(yTS, type = "tau", lags = "long") %>% summary()

##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 31 lags.
##
## Value of test-statistic is: 0.1483
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
ur.kpss(yTS[1:150], type = "tau", lags = "long") %>% summary()

##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 13 lags.
##
## Value of test-statistic is: 0.1809
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
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Example 1: Difference stationary series vs. Trend stationary series contd.

ur.kpss(yDS, type = "tau", lags = "long") %>% summary()

##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 31 lags.
##
## Value of test-statistic is: 1.9601
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
ur.kpss(yDS[1:150], type = "tau", lags = "long") %>% summary()

##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 13 lags.
##
## Value of test-statistic is: 0.1412
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
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Unit Root and Stationarity Tests

Phillips-Perron (PP) test
I an alternative to ADF test, estimates one of the models

model A ∆yt = γyt−1+et
model B ∆yt = γyt−1+µ+et
model C ∆yt = γyt−1+µ+βt+et

and tests H0 : γ = 0 against HA : γ < 0
I unlike ADF uses non-parametric correction based on Newey-West

heteroskedasticity and autocorrelation consistent (HAC) estimators to
account for possible autocorrelation in et

I advantage over the ADF: PP tests are robust to general forms of
heteroskedasticity and do not require to choose number of lags in the test
regression

I asymptotically identical to ADF test, but likely inferior in small samples
I like ADF also not very powerful at distinguishing stationary near unit root

series for unit root series
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Unit Root and Stationarity Tests

Elliot, Rothenberg and Stock (ERS) tests
I two efficient unit root tests with substantially higher power than the ADF or

PP tests especially when φ1 is close to 1
I P-test: optimal for point alternative φ1 = 1−c̄/T
I DF-GLS test: main idea - estimate test regression as in model A of ADF

but with detrended time series yt
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Example 1: Difference stationary series vs. Trend stationary series contd.

ur.ers(yTS, type ="P-test", model = "trend") %>% summary()

##
## ###############################################
## # Elliot, Rothenberg and Stock Unit Root Test #
## ###############################################
##
## Test of type P-test
## detrending of series with intercept and trend
##
## Value of test-statistic is: 0.5048
##
## Critical values of P-test are:
## 1pct 5pct 10pct
## critical values 3.96 5.62 6.89
ur.ers(yTS[1:150], type = "P-test", model = "trend") %>% summary()

##
## ###############################################
## # Elliot, Rothenberg and Stock Unit Root Test #
## ###############################################
##
## Test of type P-test
## detrending of series with intercept and trend
##
## Value of test-statistic is: 8.2584
##
## Critical values of P-test are:
## 1pct 5pct 10pct
## critical values 4.05 5.66 6.86
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Example 1: Difference stationary series vs. Trend stationary series contd.
ur.ers(yTS, type = "DF-GLS", model = "trend") %>% summary()

##
## ###############################################
## # Elliot, Rothenberg and Stock Unit Root Test #
## ###############################################
##
## Test of type DF-GLS
## detrending of series with intercept and trend
##
##
## Call:
## lm(formula = dfgls.form, data = data.dfgls)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5735 -0.7132 -0.0517 0.6432 4.2731
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## yd.lag -0.041303 0.004285 -9.639 < 2e-16 ***
## yd.diff.lag1 0.003327 0.014217 0.234 0.81498
## yd.diff.lag2 -0.013141 0.014169 -0.927 0.35374
## yd.diff.lag3 -0.040292 0.014149 -2.848 0.00442 **
## yd.diff.lag4 0.002834 0.014147 0.200 0.84125
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.02 on 4990 degrees of freedom
## Multiple R-squared: 0.02337, Adjusted R-squared: 0.02239
## F-statistic: 23.88 on 5 and 4990 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -9.6387
##
## Critical values of DF-GLS are:
## 1pct 5pct 10pct
## critical values -3.48 -2.89 -2.57
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Example 1: Difference stationary series vs. Trend stationary series contd.
ur.ers(yTS[1:150], type = "DF-GLS", model = "trend") %>% summary()

##
## ###############################################
## # Elliot, Rothenberg and Stock Unit Root Test #
## ###############################################
##
## Test of type DF-GLS
## detrending of series with intercept and trend
##
##
## Call:
## lm(formula = dfgls.form, data = data.dfgls)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.56982 -0.65834 -0.03218 0.73765 2.39730
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## yd.lag -0.082652 0.036050 -2.293 0.0234 *
## yd.diff.lag1 -0.027003 0.084611 -0.319 0.7501
## yd.diff.lag2 -0.004045 0.083743 -0.048 0.9615
## yd.diff.lag3 -0.055587 0.083414 -0.666 0.5063
## yd.diff.lag4 0.092734 0.082401 1.125 0.2623
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9947 on 140 degrees of freedom
## Multiple R-squared: 0.05753, Adjusted R-squared: 0.02387
## F-statistic: 1.709 on 5 and 140 DF, p-value: 0.1364
##
##
## Value of test-statistic is: -2.2927
##
## Critical values of DF-GLS are:
## 1pct 5pct 10pct
## critical values -3.46 -2.93 -2.64
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