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Lecture 6 Forecasting
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Forecasting

three main components needed to produce a forecast
I information set It = {y0, y1, . . . , yt} at forecast origin t
I forecast horizon h
I loss function L(yt+h−ft,h) or L(et,h)

where ft,h is the h-step ahead forecast at forecast origin t given information set
It and et,h = yt+h−ft,h is the forecast error

optimal forecast: forecaster wants to construct a forecast f∗t+h that minimizes
the expected loss

E
[
L(yt+h−ft,h)|It

]
=
∫
L(yt+h−ft,h)f(yt+h|It)dyt+h

thus
f∗t,h = arg min

ft,h

E
[
L(yt+h−ft,h)|It

]
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Point, Interval and Density Forecasts

first, we need conditional distribution and moments for yt+h given information
set It
I conditional probability density function f(yt+h|It)
I conditional mean µt+h|t = Et(yt+h|It)
I conditional variance σ2

t+h|t = vart(yt+h|It)

these will be used to build the point, interval and density forecasts
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Point, Interval and Density Forecasts
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Symmetric Loss Function
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Point, Interval and Density Forecasts

suppose that conditional density f(yt+h|It) is N(µt+h|t, σ2
t+h|t) then density

forecast is N(µt+h|t, σ2
t+h|t) and

1. if loss function is quadratic L(et,h) = ae2
t,h

I optimal point forecast is f∗t+h = µt+h|t
I 95% interval forecast is µt+h|t±1.96σt+h|t

2. if loss function is absolute value L(et,h) = a|et,h|
I optimal point forecast is the conditional median f∗t+h = median(yt+h|It)

note: if f(yt+h|It) is symmetric then mean and median coincide
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Quadratic Loss Function
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Example: AR(1) model

suppose that yt follows an AR(1) model yt = φ0+φ1yt−1+εt with
εt ∼ N(0, σ2

ε) and that L(et,h) = ae2
t,h then:

I for conditional mean we have

µt+1|t = Et(yt+1|It) = φ0+φ1yt

I for conditional variance

σ2
t+1|t = vart(yt+1|It) = var(εt+1) = σ2

ε

I thus the 1 step ahead point forecast of yt+1 is

ft,1 = µt+1|t = φ0+φ1yt

I the conditional density forecast for yt+1 is N(φ0+φ1yt, σ
2
ε)

I the 95% interval forecast is µt+1|t±1.96σt+1|t that is φ0+φ1yt±1.96σε
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Example: AR(1) model
for forecast step h ∈ {1, 2, 3, . . .}
I for conditional mean we have

µt+1|t = Et(yt+1|It) = φ0+φ1yt

µt+2|t = Et(yt+2|It) = φ0+φ1Et(yt+1|It) = (1+φ1)φ0+φ2
1yt

µt+3|t = Et(yt+3|It) = φ0+φ1Et(yt+2|It) = (1+φ1+φ2
1)φ0+φ3

1yt

...

and so µt+h|t → φ0
1−φ1

as h→∞
I for conditional variance

σ2
t+1|t = vart(yt+1|It) = var(εt+1) = σ2

ε

σ2
t+2|t = vart(yh+2|It) = var(φ1yt+1+εt+2|It) = (1+φ2

1)σ2
ε

σ2
t+3|t = vart(yh+3|It) = var(φ1yh+2+εt+3|It) = (1+φ2

1+φ4
1)σ2

ε

...

and so σ2
t+h|t →

σ2
ε

1−φ2
1
as h→∞

conditional mean thus converges to the unconditional mean, conditional variance
converges to the unconditional variance
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Example: AR(1) model
library(tidyquant)
library(timetk)

# obtain data on real GDP, construct its log change
data.tbl <-

tq_get("GDPC1",
get = "economic.data",
from = "1947-01-01",
to = "2018-12-31") %>%

rename(y = price) %>%
mutate(dly = 4*(log(y) - lag(log(y))))

# split sample - estimation subsample dates
fstQ <- 1947.00 # 1947Q1
lstQ <- 2008.75 # 2008Q4

# convert data into ts, which is the format that Acf, auto.arima and forecast expect
data.ts <- data.tbl %>%

tk_ts(select = dly, start = fstQ, frequency = 4)

# split sample - estimation and prediction subsamples
data.ts.1 <- data.tbl %>%

tk_ts(select = dly, start = fstQ, end = lstQ, frequency = 4)
data.ts.2 <- data.ts %>%

window(start = lstQ + 0.25)

# create 1,2,..,h step ahead forecasts, with 2008Q4 as forecast origin
library(forecast)
m1 <- Arima(data.ts.1, order = c(1,0,0))
m1.f.1.to.hmax <- forecast(m1, length(data.ts.2))
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Example: AR(1) model

# plot the forecast
library(ggplot2)
library(scales)
theme_set(theme_minimal())
autoplot(m1.f.1.to.hmax) +

geom_hline(yintercept = 0, color = "gray50") +
scale_y_continuous(labels = percent_format(accuracy = 1),

breaks = seq(-0.1, 0.15, 0.05)) +
labs(x = "", y = "" , title = "Real GDP Growth Rate, Quarter over Quarter, Annualized",

subtitle = "Multiperiod Point Forecast with 80% and 95% Confidence Intervals") +
theme(legend.position = "none")
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Example: MA(2) model
suppose that yt follows an MA(2) model yt = φ0+εt+θ1εt−1+θ2εt−2 with
εt ∼ N(0, σ2

ε) and that L(et,h) = ae2
t,h then:

I for conditional mean we have

µt+1|t = Et(yt+1|It) = φ0+θ1εt+θ2εt−1

µt+2|t = Et(yt+2|It) = φ0+θ2εt

µt+3|t = Et(yt+3|It) = φ0

I for conditional variance

σ2
t+1|t = vart(yt+1|It) = var(εt+1) = σ2

ε

σ2
t+2|t = vart(yh+2|It) = var(εt+2+θ1εt+1) = (1+θ2

1)σ2
ε

σ2
t+3|t = vart(yh+3|It) = var(εt+3+θ1εt+2+θ2εt+1) = (1+θ2

1 +θ2
2)σ2

ε

I the 1, 2, and 3 step ahead point forecasts are thus

ft,1 = µt+1|t = φ0+θ1εt+θ2εt−1

ft,2 = µt+2|t = φ0+θ2εt

ft,3 = µt+3|t = φ0
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Example: MA(2) model

m2 <- Arima(data.ts.1, order=c(0,0,2))
m2.f.1.to.hmax <- forecast(m2, length(data.ts.2))

autoplot(m2.f.1.to.hmax) +
geom_hline(yintercept = 0, color = "gray50") +
scale_y_continuous(labels = percent_format(accuracy = 1),

breaks = seq(-0.1, 0.15, 0.05)) +
labs(x = "", y = "" , title = "Real GDP Growth Rate, Quarter over Quarter, Annualized",

subtitle = "Multiperiod Point Forecast with 80% and 95% Confidence Intervals") +
theme(legend.position = "none")
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Forecasting using ARMA(p, q) models

ARMA(p, q) models are mostly suitable for forecasts with a small step h,
forecasts of distant future are not particularly accurate

forecast based on an AR(p) model:
I conditional mean converges to unconditional mean gradually
I conditional variance converges to unconditional variance gradually

forecast based on an MA(q) model:
I once h > q the conditional mean jumps straight to unconditional mean
I once h > q the conditional variance jumps straight to unconditional variance
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Asymmetric Loss Function
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Point, Interval and Density Forecasts

suppose that conditional density f(yt+h|It) is N(µt+h|t, σ2
t+h|t) so that density

forecast is N(µt+h|t, σ2
t+h|t) and

1. if loss function is linex L(et,h) = exp(aet,h)−aet,h−1
I optimal point forecast is f∗t+h = µt+h|t+ a

2σ
2
t+h|t

2. if loss function is linlin

L(et,h) =

{
a|et,h| if et,h < 0
(1−a)|et,h| if et,h ≥ 0

I optimal point forecast is conditional quintile f∗t+h = qa(yt+h|It)

thus for asymmetric loss function optimal forecast is actually biased - on
average forecast error is either positive or negative
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Linex Loss Function
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Example: AR(1) model

suppose that yt follows an AR(1) model yt = φ0+φ1yt−1+εt with
εt ∼ N(0, σ2

ε) and that L(et,h) = exp(aet,h)−aet,h−1 then:
I for conditional mean we have

µt+1|t = Et(yt+1|It) = φ0+φ1yt

I for conditional variance

σ2
t+1|t = vart(yt+1|It) = var(εt+1) = σ2

ε

I thus the 1 step ahead point forecast of yt+1 is

ft,1 = µt+1|t+
a

2σ
2
t+1|t = φ0+φ1yt+

a

2σ
2
ε

I the conditional density forecast for yt+1 is N(φ0+φ1yt, σ
2
ε)
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Evaluating Accuracy of Forecasts

general idea:
I split sample into two parts:

estimation sample y1, . . . , yt
prediction sample yt+1, . . . , yT

I estimate the model using the first subsample
I evaluate in-sample accuracy - compare fitted values ŷ1, . . . , ŷt with actual

values y1, . . . , yt

I use the second subsample to construct set of h step ahead forecasts
ft,h, ft+1,h, . . . , fT−h,h

I evaluate out-of-sample accuracy - compare forecasts
ft,h, ft+1,h, . . . , fT−h,h with actual values yt+h, yt+1+h, . . . , yT

I a model which fits the estimation sample well will not necessarily
forecast well
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In-Sample Evaluation of Accuracy
given the fitted values ŷj from the model, and in sample residuals ej = yj−ŷj

Mean Error - measure of the average bias

ME = 1
t

t∑
j=0

ej

Mean Squared Error - sample average loss for quadratic loss function

MSE = 1
t

t∑
j=0

e2
j

Mean Absolute Error - sample average loss for absolute value loss function

MAE = 1
t

t∑
j=0

|ej |

Mean Absolute Percentage Error

MAPE = 1
t

t∑
j=0

∣∣∣ ej
yj

∣∣∣
Mean Absolute Scaled Error - calculates ratio of in sample MAE of the model
forecast relative to in sample MAE for one-step naive forecast method ŷj+1 = yj

MASE =
1
t

∑t

j=0 |ej |
1
t−1
∑t−1

j=1 |yj+1−yj | 20 / 32



In-Sample Evaluation of Accuracy

Mean Absolute Percentage Error (MAPE)
I the advanatage is that is scale free
I it can not be used with data that takes negative values, is sometimes zero,

or very small in magnitude
I it assumes that the scale has a natural zero (and thus it can not be used for

example with temperature forecasting)

Mean Absolute Scaled Error
I an alternative to MAPE, it is also scale free, but without its limitations
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In-Sample Evaluation of Accuracy

m1 <- Arima(data.ts.1, order = c(1,0,0))
accuracy(m1)

## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 6.671111e-05 0.03684878 0.02743382 -219.0385 327.9158 0.6468704 -0.03706642
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Out-of-Sample Evaluation of Accuracy
given out of sample forecast errors et,h, et+1,h, . . . , eT−h,h

Mean Error

ME = 1
T−t−h+1

T−h−t∑
j=0

et+j,h

Mean Squared Error

MSE = 1
T−t−h+1

T−h−t∑
j=0

e2
t+j,h

Mean Absolute Error

MAE = 1
T−t−h+1

T−h−t∑
j=0

|et+j,h|

Mean Absolute Percentage Error

MAPE = 1
T−t−h+1

T−h−t∑
j=0

∣∣∣ et+j,h
yt+j+h

∣∣∣
Mean Absolute Scaled Error

MASE =
1

T−l−h+1
∑T−h−t

j=0 |et+j,h|
1
t−h

∑t−h
j=1 |yj+h−yj |

Mean Loss - sample average loss given loss function L(·)

L̄ = 1
T−t−h+1

T−l−t∑
j=0

L(et+j(h))
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Out-of-Sample Evaluation of Accuracy - Forecasting Schemes

out of sample forecasts and forecast errors used to calculate ME, MSE, MAE,
MPE, MAPE, . . . can be constructed using one of the three schemes:
I fixed scheme
I recursive scheme
I rolling scheme
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Forecasting Schemes
Fixed scheme example for one step ahead forecast:
model is estimated only once, each one step ahead forecast is constructed using
same parameters
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Out-of-Sample Evaluation of Accuracy - Fixed Scheme

# estimate AR(1) model 1947Q2 to 2008Q4
m1 <- Arima(y = data.ts.1, order = c(1,0,0))
# create 1-step ahead forecasts - forecast origin is moving from 2008Q4 to 2017Q3
# but always use same estimated model m1 so this is a fixed forecasting scheme
m1.f.1 <- Arima(y = data.ts, model = m1)
# evaluate accuracy of 1-step ahead forecast throughout the whole sample 1947Q2 to 2016Q4
accuracy(fitted(m1.f.1), data.ts)

## ME RMSE MAE MPE MAPE ACF1 Theil's U
## Test set -0.0008678954 0.03488182 0.0256498 -184.1251 308.4342 -0.03205624 0.6666805
# evaluate accuracy of out-of-sample 1-step ahead forecasts
accuracy(fitted(m1.f.1), data.ts.2)

## ME RMSE MAE MPE MAPE ACF1 Theil's U
## Test set -0.00678707 0.01797677 0.01435103 36.99308 185.0511 -0.3416191 0.5446699
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Forecasting Schemes
Recursive scheme example for one step ahead forecast:
estimation sample keeps expanding and model is re-estimated again when each
new observation is added to the estimation sample
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Forecasting Schemes
Rolling scheme example for one step ahead forecast:
estimation sample always contains the same number of observation and model is
re-estimated again within each rolling sample
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Out-of-Sample Evaluation of Accuracy - Rolling Scheme

library(tsibble)
library(sweep)

# window size
window.length <- length(data.ts.1)

# estimate rolling ARMA model, create 1 period ahead rolling forecasts
results <-

data.tbl %>%
as_tsibble(index = date) %>%
mutate(arma.model = slide(dly, ~Arima(.x, order = c(1,0,0)), .size = window.length)) %>%
filter(!is.na(arma.model)) %>%
mutate(arma.f = map(arma.model, (. %>% forecast(h = 1) %>% sw_sweep())))

# extract the 1 period ahead rolling forecasts
m1.f.1.rol <-

results %>%
as_tibble() %>%
select(date, arma.f) %>%
unnest(arma.f) %>%
filter(key == "forecast") %>%
mutate(date = date %m+% months(3))
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Out-of-Sample Evaluation of Accuracy - Rolling Scheme
# plot the 1 period ahead rolling forecasts
m1.f.1.rol %>%

ggplot(aes(x = date, y = value)) +
geom_ribbon(aes(ymin = lo.95, ymax = hi.95), fill = "royalblue", alpha = 0.2) +
geom_ribbon(aes(ymin = lo.80, ymax = hi.80), fill = "royalblue", alpha = 0.3) +
geom_line(size = 0.7, col = "blue") +
geom_line(data = (data.tbl %>% filter(year(date) > 1999)), aes(x = date, y = dly)) +
geom_hline(yintercept = 0, color = "gray50") +
scale_y_continuous(labels = percent_format(accuracy = 1),

breaks = seq(-0.05, 0.10, 0.05)) +
scale_color_manual(values = c("black", "darkblue")) +
labs(x = "", y = "", title = "Real GDP Growth Rate, Quarter over Quarter, Annualized",

subtitle = "Rolling Forecast with 80% and 95% Confidence Intervals") +
theme(legend.position = "none")
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Forecasting Schemes - Comparison

advantages and disadvantages of the three schemes:

fixed scheme
I fast and convenient because - there is one and only one estimation
I does not allow for parameter updating, so again problem with structural

breaks and model’s stability

recursive scheme
I incorporates as much information as possible in the estimation of the model
I advantageous if the model is stable over time
I if the data have structural breaks, model’s stability is compromised and so

is the forecast

rolling scheme
I avoids the potential problem with the model’s stability
I more robust against structural breaks in the data
I does not make use of all the data
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Comparison

# multistep forecast
accuracy(m1.f.1.to.hmax$mean, data.ts.2)

## ME RMSE MAE MPE MAPE ACF1 Theil's U
## Test set -0.01049036 0.01847409 0.01446489 24.44625 207.5615 -0.07651316 0.3421473
# 1 step ahead fixed scheme forecast
accuracy(fitted(m1.f.1), data.ts.2)

## ME RMSE MAE MPE MAPE ACF1 Theil's U
## Test set -0.00678707 0.01797677 0.01435103 36.99308 185.0511 -0.3416191 0.5446699
# 1 step ahead rolling scheme forecast
accuracy(m1.f.1.rol$value, data.ts.2)

## ME RMSE MAE MPE MAPE ACF1 Theil's U
## Test set -0.005984255 0.0177914 0.01415663 41.00173 181.6136 -0.3369403 0.5535775
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