Eco 5316 Time Series Econometrics

Lecture 6 Forecasting
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Forecasting

three main components needed to produce a forecast

» information set Z; = {yo,y1,...,y:} at forecast origin ¢
» forecast horizon h

» loss function L(yt+r— ft,n) or L(et,n)

where f; 5, is the h-step ahead forecast at forecast origin ¢ given information set
Z: and et,n = Yt+h— ft.n is the forecast error

optimal forecast: forecaster wants to construct a forecast f;',; that minimizes
the expected loss

E[L(ye+n— fen)|T] :/L(ytJrh_ft,h)f(yt+h|It)dyt+h

thus
ft*,h = arg r}’lin E [L(yt+h *ft,h)u—t]
t,h
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Point, Interval and Density Forecasts

first, we need conditional distribution and moments for y.15 given information
set 7

» conditional probability density function f(yitr|Zt)
» conditional mean puy 1 pe = Ei(yernlZt)
» conditional variance UfHth = vary(ye+nlZe)

these will be used to build the point, interval and density forecasts
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Point, Interval and Density Forecasts
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Symmetric Loss Function

Quadratic loss function

Le)=ae’. a>0

L(e)

L(e)=L(—e)

Absolute value loss function

L(e)=ale|l. a=0

a-w

/.
L(e)=I(-e)
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Point, Interval and Density Forecasts

suppose that conditional density f(y:+r|Z¢) is N(ut+h|t,at2+h|t) then density
forecast is N(ut+h‘t,at2+h|t) and

1. if loss function is quadratic L(e:n) = aey ),

> optimal point forecast is f;';, = ftsyn|t
> 95% interval forecast is pipt £1.960¢ 4|t

2. if loss function is absolute value L(e¢,n) = ales n]

> optimal point forecast is the conditional median f{, , = median(y:+n|Z:)

note: if f(y¢+n|Z¢) is symmetric then mean and median coincide
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Quadratic Loss Function
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Example: AR(1) model

suppose that y; follows an AR(1) model v = ¢o+¢p1yi—1+¢€¢ with
ee ~ N(0,02) and that L(eyn) = aej,, then:

» for conditional mean we have
Kerife = Ee(yir1|Ze) = o+ o1y
» for conditional variance
ofiap = vary(ye |Te) = var(eir1) = o7
» thus the 1 step ahead point forecast of y:y1 is
fe1 = g1 = o+ P1y:

> the conditional density forecast for y;11 is N(po+p1y:,02)
» the 95% interval forecast is (1,41 £1.960¢41)¢ that is ¢po+p1y:+1.960¢
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Example: AR(1) model
for forecast step h € {1,2,3,...}

» for conditional mean we have
fet1e = Ee(yer1|Ze) = o+ o1y

peyo)t = Er(yire|Te) = o+ o1 Ee(ye+1]Te) = (1+¢1)do+ i
tersie = Br(yers|Te) = do+d1Be(yera|Te) = (14+d1+01)do+ 1 ye

and so flyqnje — % as h — oo

» for conditional variance
ot = vary (Y |Te) = var(sir) = o2
af+2|t = vari(Yni2|Ti) = var(pryei1 +eira|Lt) = (14+¢3)o?
Gt2+3|t = var:(Yn+3|Ze) = var(Pp1ynto+eers|Zy) = (1+¢§+¢411)U?

2
2 o
and soat+h‘t—>ﬁ? as h — oo

conditional mean thus converges to the unconditional mean, conditional variance
converges to the unconditional variance
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Example: AR(1) model

library(tidyquant)
library(timetk)

# obtain data on real GDP, construct its log change
data.tbl <-
tq_get ("GDPC1",
get = "economic.data",
from = "1947-01-01",
to = "2018-12-31") %>%
rename(y = price) %>/
mutate(dly = 4*(log(y) - lag(log(y))))

# split sample - estimation subsample dates
fstQ <- 1947.00 # 194701
1stQ <- 2008.75 # 200844

# convert data into ts, which is the format that Acf, auto.arima and forecast expect
data.ts <- data.tbl %>%
tk_ts(select = dly, start = fstQ, frequency = 4)

# split sample - estimation and prediction subsamples
data.ts.1 <- data.tbl %>%

tk_ts(select = dly, start = fstQ, end = 1stQ, frequency = 4)
data.ts.2 <- data.ts %>

window(start = 1stQ + 0.25)

# create 1,2,..,h step ahead forecasts, with 2008Q4 as forecast origin
library(forecast)

ml <- Arima(data.ts.l, order = c(1,0,0))

ml.f.1.to.hmax <- forecast(ml, length(data.ts.2))
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Example: AR(1) model

# plot the forecast

library(ggplot2)

library(scales)

theme_set (theme_minimal())

autoplot(ml.f.1.to.hmax) +
geom_hline(yintercept = 0, color = "gray50") +
scale_y_continuous(labels = percent_format(accuracy = 1),

breaks = seq(-0.1, 0.15, 0.05)) +

= "Real GDP Growth Rate, Quarter over Quarter, Annualized",

labs(x = "", y = "" , title =
subtitle = "Multiperiod Point Forecast with 80% and 95 Confidence Intervals") +

theme (legend.position = "none")

Real GDP Growth Rate, Quarter over Quarter, Annualized
Multiperiod Point Forecast with 80% and 95% Confidence Intervals

15%
10%

||

0%

-10%
1960 1980 2000 2020

11/32



Example: MA(2) model

suppose that y; follows an MA(2) model y; = ¢g+e¢+611—1+0261—2 with
ge ~ N(0,02) and that L(eyn) = aej, then:

» for conditional mean we have
fet1e = Ee(yer1|Ze) = po+016: 402611

Mot = Er(yeralZi) = dpo+baer
Bigsje = Fi(ye+s|Te) = ¢o

» for conditional variance

0,52+1|t =vary(ye+1|Ze) = var(ee41) = o2
at2+2|t = var:(Yn+2|Z:) = var(es42+016e41) = (1+9f)0?

(7752+3|t = vart(yh+3|It) = var(st+3+6‘15t+2 +026t+1) = (1+9%+9§)U§

» the 1, 2, and 3 step ahead point forecasts are thus

fe1 = py1e = Po+016c 402801
ft.2 = peyop = ¢o+02e¢
fe3 = He4+3]t = ®o
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Example: MA(2) model

m2 <- Arima(data.ts.1, order=c(0,0,2))
m2.f.1.to.hmax <- forecast(m2, length(data.ts.2))

autoplot(m2.f.1.to.hmax) +
geom_hline(yintercept = 0, color = "gray50") +
scale_y_continuous(labels = percent_format(accuracy = 1),
breaks = seq(-0.1, 0.15, 0.05)) +

labs(x = "", y "" , title = "Real GDP Growth Rate, Quarter over Quarter, Annualized",
subtitle = "Multiperiod Point Forecast with 80% and 95% Confidence Intervals") +
theme (legend.position = "none"

Real GDP Growth Rate, Quarter over Quarter, Annualized
Multiperiod Point Forecast with 80% and 95% Confidence Intervals
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Forecasting using ARMA(p, ¢) models

ARMA(p, q) models are mostly suitable for forecasts with a small step h,
forecasts of distant future are not particularly accurate

forecast based on an AR(p) model:

» conditional mean converges to unconditional mean gradually

» conditional variance converges to unconditional variance gradually
forecast based on an MA(g) model:

» once h > ¢ the conditional mean jumps straight to unconditional mean

» once h > q the conditional variance jumps straight to unconditional variance
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Asymmetric Loss Function

Linex function

L(e)=exp(ae)—ae—1,

az0

Lin-lin function

{a|e| e>0
L(e)=

ble| e<0

L(e)

0 5

b>a— L(—e)>L(e)
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Point, Interval and Density Forecasts

suppose that conditional density f(ye1n|Zt) is N (tbetnies aerh‘t) so that density
forecast is N(ut+h‘t,crt2+h|t) and

1. if loss function is linex L(et,n) = exp(aern)—aerp—1

» optimal point forecast is f/,;, = ut+h\t+%af+h|t

2. if loss function is linlin

ales,n| ifern <O

L =
(et.n) (1—a)lecn| if en >0

» optimal point forecast is conditional quintile fy; = qa(ys+n|Zt)

thus for asymmetric loss function optimal forecast is actually biased - on
average forecast error is either positive or negative
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Linex Loss Function
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Example: AR(1) model

suppose that y; follows an AR(1) model ¥+ = ¢o+p1yt—1+e+ with

et ~ N(0,02) and that L(es ) = exp(aesn)—aesrn—1 then:

» for conditional mean we have

peife = Ei(yir1|Ze) = o+ o1y

» for conditional variance

ot = vary(yer [Te) = var(ep) = o7

» thus the 1 step ahead point forecast of ;41 is
a

2

a 2
Zo?

O'EJFW = go+P1y: + D)

fta = Pey1)t T

> the conditional density forecast for ;11 is N(po+d1y:,02)
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Evaluating Accuracy of Forecasts

general idea:

» split sample into two parts:
estimation sample y1, ..., y:
prediction sample yiy1,...,yr

» estimate the model using the first subsample

» evaluate in-sample accuracy - compare fitted values 91, ..., §: with actual
values y1, ..., 9

» use the second subsample to construct set of h step ahead forecasts
fens fevrn, ooy fT—nn

» evaluate out-of-sample accuracy - compare forecasts

ft,h7 ft+1,h, ey foh,h with actual values Ytthy Yt+1+hy -, YT

» a model which fits the estimation sample well will not necessarily
forecast well
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In-Sample Evaluation of Accuracy
given the fitted values g; from the model, and in sample residuals e; = y; —;

Mean Error - measure of the average bias
t
1
ME =2 "¢
t
j=0
Mean Squared Error - sample average loss for quadratic loss function
1 t
MSE =2 ¢
t
j=0
Mean Absolute Error - sample average loss for absolute value loss function

t
1
MAE = £ Z% le;]
P

Mean Absolute Percentage Error

t
1 e;
MAPE = - <
t; Yj
Mean Absolute Scaled Error - calculates ratio of in sample MAE of the model
forecast relative to in sample MAE for one-step naive forecast method 9,411 = y;

t
% Zj:o |6j|

—1
15—%2]':1 [Yj+1—y;] 20/32
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In-Sample Evaluation of Accuracy

Mean Absolute Percentage Error (MAPE)

» the advanatage is that is scale free

» it can not be used with data that takes negative values, is sometimes zero,
or very small in magnitude

it assumes that the scale has a natural zero (and thus it can not be used for
example with temperature forecasting)

>

Mean Absolute Scaled Error

» an alternative to MAPE, it is also scale free, but without its limitations
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In-Sample Evaluation of Accuracy

ml <- Arima(data.ts.1, order = c(1,0,0))
accuracy (m1)

## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 6.671111e-05 0.03684878 0.02743382 -219.0385 327.9158 0.6468704 -0.03706642
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Out-of-Sample Evaluation of Accuracy
given out of sample forecast errors e; h,€t11,h,---,€T—h,h

Mean Error
T—h—t

1
ME=——" :
e Z

Mean Squared Error
T—h—t

— 1 2
MSE = s Z; Cttih
p

Mean Absolute Error
T—h—t

1
MAFE = m 2; |et+j,h|
j=

Mean Absolute Percentage Error
T—h—t

1
MAPE = 75y 2
=

Mean Absolute Scaled Error

€t+j,h
Yt+i+h

1 T—h—t
T—I—h+1 E]‘:O let+j,nl

MASE = T &
5 2 [Yitn =il
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Out-of-Sample Evaluation of Accuracy - Forecasting Schemes

out of sample forecasts and forecast errors used to calculate ME, MSE, MAE,
MPE, MAPE, ... can be constructed using one of the three schemes:

» fixed scheme
» recursive scheme
» rolling scheme

24/32



Forecasting Schemes

Fixed scheme example for one step ahead forecast:
model is estimated only once, each one step ahead forecast is constructed using
same parameters

One-step ahead ]
prediction at _ Estimation sample Prediction sample
time g (tobservations) {’

t I

t+1 T
| |

|
T
Ju— Y

€

Estimation sample UEdate Prediction sample
;(robservétlons} > N
t

t+1 1 2 T
| | | | |
I T T T 1
j‘(—].l - }(_
€11
Estimation sample _ Update information set _Prediction sample
t observations
t+] 0 ) i {|+1 B T
f I | | |
! T 1 T 1
fl—,:J =1 =+l
Bril
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Out-of-Sample Evaluation of Accuracy - Fixed Scheme

# estimate AR(1) model 1947Q2 to 2008Q4

ml <- Arima(y = data.ts.l, order = c(1,0,0))

# create 1-step ahead forecasts - forecast origin is moving from 2008Q4 to 2017Q3

# but always use same estimated model ml so this is a fized forecasting scheme

ml.f.1 <- Arima(y = data.ts, model = ml)

# evaluate accuracy of 1-step ahead forecast throughout the whole sample 1947Q2 to 201604
accuracy(fitted(ml.f.1), data.ts)

## ME RMSE MAE MPE MAPE ACF1 Theil's U
## Test set -0.0008678954 0.03488182 0.0256498 -184.1251 308.4342 -0.03205624 0.6666805
# evaluate accuracy of out-of-sample 1-step ahead forecasts

accuracy(fitted(ml.f.1), data.ts.2)

## ME RMSE MAE MPE MAPE ACF1 Theil's U
## Test set -0.00678707 0.01797677 0.01435103 36.99308 185.0511 -0.3416191 0.5446699
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Forecasting Schemes
Recursive scheme example for one step ahead forecast:
estimation sample keeps expanding and model is re-estimated again when each
new observation is added to the estimation sample

One-step ahead

prediction at Estimation sample Prediction sample

time: - >
0 (t observations) {' 1 e
t | ] I |
f T T |
le - }.-[—1
€
) Estimation sample . Prediction sample
) (t+1 observations) 1 2 _;_
t+1 1 | | |
ﬂ—l.l - }-(—]
811
Estimation sample Prediction sample
) 0 (t+/ observations) B e T
t+] | | i |

! T T
Jeia ™ Yeja

€1
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Forecasting Schemes
Rolling scheme example for one step ahead forecast:
estimation sample always contains the same number of observation and model is

re-estimated again within each rolling sample

One-step ahead

prediction at  Eofimation sample Prediction sample

time - >+ >
o (tobservations) ¢ £+1 T
I I .

fm - Y(—l

t I

€1

Estimation sample Prediction sample

t+1 0 1(i‘observations) i1 s -
| I | . |
f;—].l —* }.[—:
€11
Estimation sample _Prediction sample
t+) 0 j (t observations) B et 7
‘ I 1 |
foo1 ™ Toja

€l
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Out-of-Sample Evaluation of Accuracy - Rolling Scheme

library(tsibble)
library(sweep)

# window size
window.length <- length(data.ts.1)

# estimate Tolling ARMA model, create 1 period ahead Tolling forecasts
results <-
data.tbl %>%
as_tsibble(index = date) %>
mutate(arma.model = slide(dly, ~Arima(.x, order = c(1,0,0)), .size = window.length)) %>’
filter(!is.na(arma.model)) %>%
mutate(arma.f = map(arma.model, (. %>} forecast(h = 1) %>} sw_sweep())))

# extract the 1 period ahead rolling forecasts
mi.f.1.rol <-

results %>/

as_tibble() %>%

select(date, arma.f) %>%

unnest (arma.f) %>%

filter (key == "forecast") %>%

mutate(date = date %m+) months(3))
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Out-of-Sample Evaluation of Accuracy - Rolling Scheme

# plot the 1 period ahead Tolling forecasts
mi.f.1.rol %>%
ggplot (aes(x = date, y = value)) +
geom_ribbon(aes(ymin = 10.95, ymax = hi.95), fill = "royalblue", alpha =
geom_ribbon(aes(ymin = 10.80, ymax = hi.80), fill = "royalblue", alpha
geom_line(size = 0.7, col = "blue") +
geom_line(data = (data.tbl %>J filter(year(date) > 1999)), aes(x = date, y = dly)) +
geom_hline(yintercept = 0, color = "gray50") +
scale_y_continuous(labels = percent_format(accuracy =
breaks = seq(-0.05, 0.10, 0.05)) +

0.2) +
0.3) +

Wy

scale_color_manual(values = c("black", "darkblue")) +
labs(x = "", y = "", title = "Real GDP Growth Rate, Quarter over Quarter, Annualized",
subtitle = "Rolling Forecast with 80% and 95% Confidence Intervals") +

theme (legend.position = "none")

Real GDP Growth Rate, Quarter over Quarter, Annualized
Rolling Forecast with 80% and 95% Confidence Intervals

10%

0% /\ A

-5%

2000 2005 2010 2015

30/32



Forecasting Schemes - Comparison

advantages and disadvantages of the three schemes:

fixed scheme
» fast and convenient because - there is one and only one estimation
» does not allow for parameter updating, so again problem with structural
breaks and model’s stability

recursive scheme
» incorporates as much information as possible in the estimation of the model

» advantageous if the model is stable over time
» if the data have structural breaks, model’s stability is compromised and so
is the forecast

rolling scheme
» avoids the potential problem with the model’s stability
» more robust against structural breaks in the data
» does not make use of all the data
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Comparison

# multistep forecast
accuracy(ml.f.1.to.hmax$mean, data.ts.2)

## ME RMSE MAE MPE MAPE ACF1 Theil's U
## Test set -0.01049036 0.01847409 0.01446489 24.44625 207.5615 -0.07651316 0.3421473
# 1 step ahead fized scheme forecast

accuracy(fitted(ml.f.1), data.ts.2)

## ME RMSE MAE MPE MAPE ACF1 Theil's U
## Test set -0.00678707 0.01797677 0.01435103 36.99308 185.0511 -0.3416191 0.5446699
# 1 step ahead Tolling scheme forecast
accuracy(ml.f.1.rol$value, data.ts.2)

## ME RMSE MAE MPE MAPE ACF1 Theil's U
## Test set -0.005984255 0.0177914 0.01415663 41.00173 181.6136 -0.3369403 0.5535775
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