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Lecture 2 Autoregressive (AR) processes
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Trend, Seasonality, Structural Change, Volatility, Outliers

I trend is a tendency of the time series to either grow or decline over the
long term

I seasonality refers to regular patterns arising in economic activity due to
calendar (on quarterly, monthly, day of week basis)

I cycles refer to patterns where the data rises and falls that are not of fixed
period/duration (so while seasonal pattern has constant length cyclic
pattern has variable length)

I timing of peaks and troughs is predictable with seasonal data, but
unpredictable in the long term with cyclic data
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Trend, Seasonality, Structural Change, Volatility, Outliers
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Trend, Seasonality, Structural Change, Volatility, Outliers
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Trend, Seasonality, Structural Change, Volatility, Outliers
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Trend, Seasonality, Structural Change, Volatility, Outliers
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Trend, Seasonality, Structural Change, Volatility, Outliers
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Trend, Seasonality, Structural Change, Volatility, Outliers

I decomposition of time series into trend, seasonal and irregular component

yt = µt+γt+εt

where
yt is the observed data
µt is an slowly changing component (trend)
γt is periodic seasonal component
εt is irregular disturbance component

I classical approach - treat trend and seasonal components as deterministic
functions

I modern approach - µt, γt, εt all contain stochastic components
I we will first look at the ways how to model the irregular component, and

leave seasonal and trend components for later
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Preliminaries

Def: Stochastic process (or time series process) is a sequence of random
variables. Observed time series is a particular realization of this process.
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Preliminaries

Def: Stochastic process {yt} is strictly stationary if joint distributions
F (yt1 , . . . , ytk ) and F (yt1+l, . . . , ytk+l) are identical for all l, k and all
t1, . . . , tk
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Preliminaries
Def: Stochastic process {yt} is (second order) weakly stationary if
(i) E(yt) = µ for all t
(ii) cov(yt, yt−l) = γl for all t, l

Note: if (i) is satisfied but (ii) the process is first order weakly stationary

Note: for l = 0 we get that var(yt) = cov(yt, yt) = γ0 for all t, which means
that variance is constant over time
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Preliminaries
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Preliminaries

I weak stationarity allows us to use sample moments to estimate population
moments

I for example, given a weakly stationary time series {y1, y2, . . . , yt} the first
moment E(yt) can be estimated using 1

t

∑t

j=1 yj

I for nonstationary process 1
t

∑t

j=1 yj is not a useful estimator, since
E(y1) 6= E(y2) 6= . . . 6= E(yt)
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Preliminaries

Def: Stochastic process {εt} is called a white noise if εt are independently
identically distributed with zero mean and finite variance: E(εt) = 0,
V ar(εt) = σ2

ε <∞, cov(εt, εs) = 0 for all t 6= s.

15 / 49



Box-Jenkins Methodology

Box-Jenkins methodology to modelling weakly stationary time series

1. Identification
2. Estimation
3. Checking Model Adequacy
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Box-Jenkins Methodology

1. Indentification
I examine time series plots of the data to determine if any transformations

are necessary (differencing, logarithms) to get weakly stationary time series,
examine series for trend (linear/nonlinear), periods of higher volatility,
seasonal patterns, structural breaks, outliers, missing data, . . .

I examine autocorrelation function (ACF) and partial autocorrelation
function (PACF) of the transformed data to determine plausible models to
be estimated

I use Q-statistics to test whether groups of autocorrelations are statistically
significant
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Box-Jenkins Methodology

2. Estimation
I estimate all models considered and select the best one - coefficients should

be statistically significant, information criteria (AIC, SBC) should be low
I model can be estimated using either conditional likelihood method or

exact likelihood method
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Box-Jenkins Methodology

3. Checking Model Adequacy
I perform in-sample evaluation of the estimated model

I estimated coefficients should be consistent with the underlying assumption of
stationarity

I inspect residuals - if the model was well specified residuals should be very
close to white-noise

I plot residuals, look for outliers, periods in which the model does not fit the data
well, evidence of structural change

I examine ACF and PACF of the residuals to check for significant autocorrelations
I use Q-statistics to test whether autocorrelations of residuals are statistically

significant
I check model for parameter instability and structural change

I perform out-of-sample evaluation of the model forecast
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Box-Jenkins Methodology

I we will now look at how the Box-Jenkins methodology works in case of a
simple univariate time series model - an autoregressive model
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AR(p) Model

I simple linear regression model with cross sectional data

yi = β0+β1xi+εi

I suppose we are dealing with time series rather than cross sectional data, so
that

yt = β0+β1xt+εt
and if the explanatory variable is the lagged dependent variable xt = yt−1
we get

yt = β0+β1yt−1+εt
I main idea: past is prologue as it determines the present, which in turn sets

the stage for future
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AR(p) Model

I hourly time series for Akkoro Kamui’s activities, before the fortress was built

{y1, y2, . . . , yt} = {drink, drink, . . . , drink}

I lots of time dependence here:

yt = yt−1
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AR(p) Model

I time series process {yt} follows autoregressive model of order 1, AR(1), if

yt = φ0+φ1yt−1+εt

or equivalently, using the lag operator

(1−φ1L)yt = φ0+εt

where {εt} is a white noise with E(εt) = 0 and V ar(εt) = σ2
ε

I more generally, time series {yt} follows an autoregressive model of order p,
AR(p), if

yt = φ0+φ1yt−1+. . .+φpyt−p+εt
or equivalently, using the lag operator

(1−φ1L−. . .−φpLp)yt = φ0+εt
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AR(p) Model

tools to determined the order p of the autoregressive model given {yt}
I Autocorrelation Function (ACF)
I Partial Autocorrelation Function (PACF)
I Portmanteau Test - Box-Pierce test and Ljung-Box test
I Information Criteria - Akaike (AIC) and Schwarz-Bayesian (BIC)
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Autocorrelation Function (ACF)

I linear dependence between yt and yt−l is given by correlation coefficient ρl
I for a weakly stationary time series process{yt} we have

ρl = cov(yt, yt−l)√
V ar(yt)V ar(yt−l)

= cov(yt, yt−l)
V ar(yt)

= γl
γ0

I theoretical autocorrelation function is {ρ1, ρ2, . . .}
I given a sample {yt}Tt=1 correlation coefficients ρl can be estimated as

ρ̂l =
∑T

t=l+1(yt−ȳ)(yt−l−ȳ)∑T

t=1(yt−ȳ)2

where ȳ = 1
T

∑T

t=1 yt

I sample autocorrelation function is {ρ̂1, ρ̂2, . . .}
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Autocorrelation function for AR(p) model

I if p = 1 then γ0 = V ar(yt) = σ2
ε

1−φ2
1
and also γl = φ1γl−1 for l > 0, thus

ρl = φ1ρl−1 (1)

and since ρ0 = 1, we get ρl = φl1

I for weakly stationary {yt} it has to hold that |φ1| < 1, theoretical ACF of a
stationary AR(1) thus decays exponentially, in either direct or oscillating way
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Autocorrelation function for AR(p) model
I if p = 2 theoretical ACF for AR(2) satisfies second order difference equation

ρl = φ1ρl−1+φ2ρl−2 (2)

or equivalently using the lag operator (1−φ1L−φ2L
2)ρl = 0

I solutions of the associated characteristic equation

1−φ1x−φ2x
2 = 0

are x1,2 = −φ1±
√
φ2

1+4φ2
2φ2

I their inverses ω1,2 = 1/x1,2 are called the characteristic roots of the
AR(2) model

I if D = φ2
1+4φ2 > 0 then ω1, ω2 are real numbers, and theoretical ACF is a

combination of two exponential decays
I if D < 0 characteristic roots are complex conjugates, and theoretical ACF

will resemble a dampened sine wave
I for weak stationarity all characteristic roots need to lie inside the unit circle,

that is |ωi| < 1 for i = 1, 2
I from equation (2) we get ρ1 = φ1

1−φ2
and ρl = ρl−1+φ2ρl−2 for l ≥ 2

27 / 49



Autocorrelation function for AR(p) model

I in general, theoretical ACF for AR(p) satisfies the difference equation of
order p

(1−φ1L−. . .−φpLp)ρl = 0 (3)

I characteristic equation of the AR(p) model is thus 1−φ1x−. . .−φpxp = 0
I AR(p) process is weakly stationary if the characteristic roots (i.e. inverses of

the solutions of the characteristic equation) lie inside of the unit circle
I plot of the theoretical ACF of a weakly stationary AR(p) process will show a

mixture of exponential decays and dampened sine waves
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Partial autocorrelation function (PACF)
I consider the following system of AR models that can be estimated by OLS

yt = φ0,1+φ1,1yt−1+e1,t (4)
yt = φ0,2+φ1,2yt−1+φ2,2yt−2+e2,t (5)
yt = φ0,3+φ1,3yt−1+φ2,3yt−2+φ3,3yt−3+e3,t (6)
... (7)

I estimated coefficients φ̂1,1, φ̂2,2, φ̂3,3, . . . form the sample partial
autocorrelation function (PACF)

I if the time series process {yt} comes from an AR(p) process, sample PACF
should have φ̂j,j close to zero for j > p

I for an AR(p) with Gaussian white noise as T goes to infinity φ̂p,p converges
to φp and φ̂l,l converges to 0 for l > p, in addition the asymptotic variance
of φ̂l,l for l > p is 1/T

I this is the reason why the interval plotted by R in the plot of PACF is
0±2/

√
T

I order of the AR process can thus be determined by finding the lag after
which PACF cuts off to zero

29 / 49



ACF and PACF for AR(1) model

AR(1) with φ1 = 0.7
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ACF and PACF for AR(1) model

AR(1) with φ1 = −0.7

0 5 10 15 20

−
0.

5
0.

0
0.

5
1.

0

th
eo

re
tic

al
 A

C
F

5 10 15 20

−
0.

7
−

0.
5

−
0.

3
−

0.
1

th
eo

re
tic

al
 P

A
C

F

0 5 10 15 20

−
0.

5
0.

0
0.

5
1.

0

sa
m

pl
e 

A
C

F

5 10 15 20

−
0.

6
−

0.
4

−
0.

2
0.

0

sa
m

pl
e 

PA
C

F

31 / 49



ACF and PACF for AR(2) model

AR(2) with φ1 = 0.2, φ2 = 0.7
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ACF and PACF for AR(2) model

AR(2) with φ1 = 1.2, φ1 = −0.7
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ACF and PACF for AR(p) model

I interactive overview of ACF and PACF for simulated AR(p) models is here
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Portmanteau Test
I to test H0 : ρ1 = . . . = ρm = 0 against an alternative hypothesis
Ha : ρj 6= 0 for some j ∈ {1, . . . ,m} following two statistics can be used:

Box-Pierce test

Q∗(m) = T

m∑
l=1

ρ̂2
l

Ljung-Box test

Q(m) = T (T+2)
m∑
l=1

ρ̂2
l

T−l

I the null hypothesis is rejected at α% level if the above statistics are larger
than the 100(1−α)th percentile of chi-squared distribution with m degrees
of freedom

I note: Ljung-Box statistics tends to perform better in smaller samples
I the general recommendation is to use m ≈ lnT , but this depends on

application
I e.g.: for monthly data with a seasonal pattern it makes sense to set m to

12, 24 or 36, and for quarterly data with a seasonal pattern m to 4, 8, 12
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Portmanteau Test

I these tests are also used for in-sample evaluation of model adequacy
I if the model was correctly specified Ljung-Box Q(m) statistics for the

residuals of the estimated model follows chi-squared distribution with m−g
degrees of freedom where g is the number of estimated parameters

I for AR(p) that includes a constant g = p+1
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Information Criteria

I in practice, there will be often several competing models that would be
considered

I if these models are adequate and with very similar properties based on ACF,
PACF, and Q statistics for residuals, information criteria can help decide
which one is preferred

I main idea: information criteria combine the goodness of fit with a penalty
for using more parameters
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Information Criteria

I two commonly used information criteria:

Akaike Information Criterion (AIC)

AIC = − 2
T

logL+ 2
T
n

Schwarz-Bayesian information criterion (BIC)

BIC = − 2
T

logL+ log T
T

n

in both expressions above T is the sample size, n is the number of
parameters in the model, L is the value of the likelihood function, and log
is the natural logarithm

I AIC or BIC of competing models can be compared and the model that has
the smallest AIC or BIC value is preferred

I BIC will always select a more parsimonious model with fewer parameters
than the AIC because log T > 2 and each additional parameter is thus
penalized more heavily
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Information Criteria

I fundamental difference - AIC tries to select the model that most adequately
approximates unknown complex data generating process with infinite
number of parameters

I this true process is never in the set of candidate models that are being
considered

I BIC assumes that the true model is among the set of considered candidates
and tries to identify it
I BIC performs better than AIC in large samples - it is asymptotically

consistent while AIC is biased toward selecting an overparameterized model

I in small samples AIC can perform better than BIC
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Information Criteria

I some software packages report other information criteria in addition to AIC
and BIC

I Hannan-Quinn information criterion (HQ)

HQ = − 2
T

logL+ 2 log(log T )
T

n

I corrected Akaike Information Criterion (AICc) which is AIC with a
correction for finite sample sizes to limit overfitting; for a univariate linear
model with normal residuals

AICc = AIC+ 2(n+1)(n+2)
T−n−2

where T is the sample size and n is the number of estimated parameters
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Example: AR model for Real GNP growth rate

# load magrittr package (pipe operators)
library(magrittr)

# import the data on the growth rate of GDP, convert it into time series xts object
y <- scan(file = "http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/q-gnp4791.txt") %>%

ts(start = c(1947,2), frequency = 4)

str(y)

## Time-Series [1:176] from 1947 to 1991: 0.00632 0.00366 0.01202 0.00627 0.01761 ...
head(y)

## [1] 0.00632 0.00366 0.01202 0.00627 0.01761 0.00918
tail(y)

## [1] 0.00085 0.00420 0.00108 0.00358 -0.00399 -0.00650
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Example: AR model for Real GNP growth rate

# load ggplot2, ggfortify and forecast packages
library(ggplot2)
library(ggfortify)
library(forecast)
# define default theme to be B&W
theme_set(theme_bw())
# plot
autoplot(y) +

labs(x = "", y = "", title = "Real GNP growth rate")
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Example: AR model for Real GNP growth rate
# plot ACF and PACF for y up to lag 24
ggAcf(y, lag.max = 24)
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Example: AR model for Real GNP growth rate
# estimate an AR(1) model - there is only one significant coefficient in the PACF plot for y
m1 <- Arima(y, order = c(1,0,0))
# show the structure of object m1
str(m1)

## List of 18
## $ coef : Named num [1:2] 0.37865 0.00769
## ..- attr(*, "names")= chr [1:2] "ar1" "intercept"
## $ sigma2 : num 9.91e-05
## $ var.coef : num [1:2, 1:2] 4.88e-03 -1.12e-06 -1.12e-06 1.44e-06
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:2] "ar1" "intercept"
## .. ..$ : chr [1:2] "ar1" "intercept"
## $ mask : logi [1:2] TRUE TRUE
## $ loglik : num 562
## $ aic : num -1119
## $ arma : int [1:7] 1 0 0 0 4 0 0
## $ residuals: Time-Series [1:176] from 1947 to 1991: -0.00126 -0.00351 0.00586 -0.00306 0.01046 ...
## $ call : language Arima(y = y, order = c(1, 0, 0))
## $ series : chr "y"
## $ code : int 0
## $ n.cond : int 0
## $ nobs : int 176
## $ model :List of 10
## ..$ phi : num 0.379
## ..$ theta: num(0)
## ..$ Delta: num(0)
## ..$ Z : num 1
## ..$ a : num -0.0142
## ..$ P : num [1, 1] 0
## ..$ T : num [1, 1] 0.379
## ..$ V : num [1, 1] 1
## ..$ h : num 0
## ..$ Pn : num [1, 1] 1
## $ aicc : num -1119
## $ bic : num -1109
## $ x : Time-Series [1:176] from 1947 to 1991: 0.00632 0.00366 0.01202 0.00627 0.01761 ...
## $ fitted : Time-Series [1:176] from 1947 to 1991: 0.00758 0.00717 0.00616 0.00933 0.00715 ...
## - attr(*, "class")= chr [1:2] "ARIMA" "Arima"
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Example: AR model for Real GNP growth rate

# print out results for m1
m1

## Series: y
## ARIMA(1,0,0) with non-zero mean
##
## Coefficients:
## ar1 mean
## 0.3787 0.0077
## s.e. 0.0698 0.0012
##
## sigma^2 estimated as 9.913e-05: log likelihood=562.47
## AIC=-1118.94 AICc=-1118.8 BIC=-1109.43
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Example: AR model for Real GNP growth rate
# diagnostics for AR(1) model - there seems to be a problem with remaining serial correlation at lag 2
ggtsdiag(m1, gof.lag = 16)
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Example: AR model for Real GNP growth rate
# estimate an AR(2) model to deal with the problem of remaining serial correlation at lag 2
m2 <- Arima(y, order = c(2,0,0))
# diagnostics for AR(2) model shows that problem with remaining serial correlation at lag 2 is gone
ggtsdiag(m2, gof.lag = 16)
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Example: AR model for Real GNP growth rate
# estimate an AR(3) model since PACF for lag 2 and 3 are comparable in size
m3 <- Arima(y, order = c(3,0,0))
# diagnostics for the AR(3) model
ggtsdiag(m3, gof.lag = 16)
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Example: AR model for Real GNP growth rate
# Ljung-Box test - for residuals of a model adjust the degrees of freedom m
# by subtracting the number of parameters g
# this adjustment will not make a big difference if m is large but matters if m is small

m2.LB.lag8 <- Box.test(m2$residuals, lag = 8, type = "Ljung")
m2.LB.lag8

##
## Box-Ljung test
##
## data: m2$residuals
## X-squared = 7.2222, df = 8, p-value = 0.5129

1-pchisq(m2.LB.lag8$statistic, df = 6)

## X-squared
## 0.3007889
m2.LB.lag12 <- Box.test(m2$residuals, lag = 12, type = "Ljung")
m2.LB.lag12

##
## Box-Ljung test
##
## data: m2$residuals
## X-squared = 10.098, df = 12, p-value = 0.6074

1-pchisq(m2.LB.lag12$statistic, df = 10)

## X-squared
## 0.4319577
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