Eco 4306 Economic and Business Forecasting

Lecture 28
Chapter 15: Financial Applications of Time-Varying Volatility
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Motivation

P investors and financial institutions allocate capital among different assets with
different amount of risk

> some of the applications of modeling and forecasting the time-varying conditional
variance: risk management, portfolio allocation, asset pricing, and option pricing
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15.1 Risk Management

» main issue in risk management: assessment of losses in a probabilistic fashion
» various approaches to risk evaluation, offering complementary views of risk

P> we will analyze two of these measures: value-at-risk and expected shortfall
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15.1.1 Value-at-Risk (VaR)

» suppose that you are managing a portfolio of assets and you have a long position
(you are a buyer of assets)

P a negative scenario for your portfolio: prices of the assets go down, positive
scenario: prices go up

» potential maximum loss: all assets in your portfolio become worthless, resulting in
100% capital loss

» but what is the probability of such an event?
more generally, we may wish to assess the probability of a 40%, 30%, or 10% loss

or, equivalently, we may want to determine how much capital would be lost if a
low-probability negative event were to happen

> these are the fundamental questions behind value-at-risk (VaR)
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15.1.1 Value-at-Risk (VaR)

» VaR calculations are very prominent among financial institutions

U.S. banking institutions need to maintain minimum capital requirements, which
regulatory agency monitors periodically

» Basle Accord endorses the VaR methodology to assess and monitor market risk
capital requirements

> regulators require the institution to calculate the 1% VaR for a 10-day horizon, and
to hold enough capital to cover the potential losses assessed by the VaR measure
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15.1.1 Value-at-Risk (VaR)

>

value-at-risk (VaR): for a random variable ¢, e.g. portfolio return, we define the

«-VaR, denoted as rtvaR(a), as the value of r; such that the probability of

obtaining an equal or smaller value than this is a%
P(rs < rz/aR(a)) =«

we are thus essentially interested in the quantiles of a random variable r4: using
cummulative distribution function F' for random variable r; we have

" = P o)

note that VaR is the minimum loss that occurs for a given probability of tail event

size of area
P(r </ =g

i;T/aR(a)
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15.1.1 Value-at-Risk (VaR)

P consider the stochastic process of returns to a portfolio of assets
Tt = Hyjt—1 T O¢t—12t

where 2z ~ N(0,1) is iid white noise, and p;;_1 and o;;_; are the conditional
mean and conditional standard deviation

> by applying the definition of VaR and standardizing the random variable r; we get

a=P(rs < TXGR(OO)

e — p TVaR(a) —u
P( t)t—1 < t\t—l)

Ot|t—1 Otlt—1
VaR(a) VaR(a)

r — Ug)e— T — Wyt—
=P(Zt§ t t)t 1):¢)<t t)t 1)
Ot|t—1 Ot|t—1

where @ is the cdf of a standard normal distribution

» for the a-VaR we thus have
VaR _
¢ (@ Hejp—1 + @ l(a)fftu—l

where ®~1 is the inverse of the cdf of a standard normal distribution (so a normal
quantile function)

> since ®~1(0.05) = —1.645, the 5% VaR is ry “*(*0%) — 1y, | —1.6450,,_,

> since ®1(0.01) = —2.326, the 1% VaR is r; “"(*°V = .\, | —2.3260,, ,
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15.1.1 Value-at-Risk (VaR)
> consider the GARCH(1,1) model for S&P 500 daily returns from 1/2/1998 to
7/25/2008 that we estimated last time

Dependent Variable: R

Method: ML ARCH - Normal distribution (OPG - BHHH / Marquardt steps)
Date: 05/05/19 Time: 16:52

Sample: 1/02/1998 7/25/2008

Included observations: 2657

Convergence achieved after 54 iterations

Cuoefficient covariance computed using outer product of gradients
Presample variance: unconditional

GARGH = G(2) + C(3)*RESID-1)'2 + G(4)*GARCHI-1)

Variable Coefficient Std. Error z-Slatistic Prob.

o 0036082 0018125 1990718 0.0465

Variance Equation

[« 0.010592 0.001835 5772041 0.0000
RESID(-1)*2 0.066302 0.006754 9.816720 0.0000
GARCH(-1) 0.926581 0.007286 1271660 0.0000

R-squared -0.000527 MWean dependentvar 0.009781
Adjusted R-squared -0.000527 S.D.dependentvar 1.146761
SE ofregression 1.147063  Akaike info criterion 2888312
Sum squared resid 3494.644  Schwarz criterion 2897172
Log likelihood -3833.123 Hannan-Quinn criter. 2891519
Durbin-Watson stat 2079153

> the estimated GARCH(1,1) model with normally dstributed innovations is

re = 0.036 + ¢
Tyl—1%t zt ~ N(0,1)
0.010 + 0.065¢7_; + 0.92707 |, ,

&t

2
Tt)t—1

P> we can use this model to construct the forecast for 1-step-ahead conditional mean
H¢y1)¢ and standard deviation oy )4 to calculate the 1-step-ahead VaR



15.1.1 Value-at-Risk (VaR)

to calculate the 1-step-ahead 1%-VaR after estimating the GARCH model in EViews:

> click on Forecast button, enter r_f into “Forecast name” box and sigmasq_f into
“GARCH (optional)” box", change”Method" to “Static forecast”

P after that select Object — Generate Series and enter the following
VaR_1pct = r_f + @qnorm(0.01)*sigmasq_f"0.5

> note: @qnorm(0.01) calculates the 1% quantile of the standard normal
distribution, if we wanted to construct the 5% VaR we would need to change this
into @gnorm(0.05)

> finally, to create an indicator whether the actual return is below the 1% VaR, select
Object — Generate Series and enter x = (r < VaR_1pct)
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15.1.1 Value-at-Risk (VaR)

Daily return for S&P 500 index
1 % VaR with normal distribution

e  Days with daily return below 1% VaR
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15.1.1 Value-at-Risk (VaR)

» for instance, for April 2, 2008, the 1-day-ahead conditional mean is Hejg—1 = 0.036,
the 1-day-ahead conditional standard deviation o, _; = 1.785, so that the
1-day-ahead 1% VaR is 0.036 — 2.326 x 1.785 = —4.117%

» thus if on April 1, we have a portfolio of $100,000, there is 1% chance that we
could lose at least $4,117 on April 2

» observe that, over the time series plot, there are some violations of the 1%
boundary - these are the days in which the actual returns are below the VaR

> theoretically, since there are 2657 observations in the sample, 1% of these
observations, so about 26, should be below the 1% VaR

» the actual number of violations is 42, which is noticebly higher and represents
1.58% of observations
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15.1.1 Value-at-Risk (VaR)

Difference between actual return and 1% VaR with normal distribution

(loss in excess of 1% VaR)
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15.1.1 Value-at-Risk (VaR)

» normal density is not well suited to account for excess kurtosis that most financial
time series exhibit

> it is thus more common to use Student-t distribution or Generalized Error
Distribution (GED) for ARCH/GARCH models because they have fatter tails than
normal distribution
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15.1.1 Value-at-Risk (VaR)

in EViews, to estimate a GARCH(1,1) with Student-¢ innovations enter the following
information in the specification window:

>

estimation settings: choose “ARCH - Autoregressive Conditional
Heteroscedasticity”" instead of “LS - Least Squares”

P> mean equation: r c

» variance and distribution specification: ARCH 1, GARCH 1

error distribution: Student’s t
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15.1.1 Value-at-Risk (VaR)

> the estimated GARCH(1,1) model with Student-t innovations is

re = 0.045 + &4

€t = O¢|t—1%t

2t ~ 1(9.22)

2

o714y = 0.006 +0.063¢7_; +0.93307 |, ,

> degrees of freedom paramater is estimated as © = 9.22; some econometricians
would round this dos/vn to the RcIosest integer. but this is not crucial

ependent Variable

Methad: ML ARCH - Students t distribution (OPG - BHHH / Marquardt steps)
Date: 05/05/19 Time: 16:52
Sample (adjusted): 110211998 71252008

Included observations: 2657 after adjustments
Convergence achieved after 21 iterations

Coefiicient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)

GARCH = C(2) + C(3)"RESID(-1)*2 + C{4)*GARCH(-1)

Variable Coeficient  Std. Error  z-Statistic  Prob.
c 0.045172 0.016959 2.663592 0.0077
Variance Equation

c 0.006595 0.002681 2450674 00139
RESID(-1)2 0.063880 0.000078 7.036415 0.0000
GARCH(-1) 0933170 0.009115 102.3810 0.0000
T-DIST. DOF 9224482 1.335634 6.906442 0.0000
R-squared -0.000954  Mean dependent var 0.008761
Adjusted R-squared -0.000954 S.D. dependentvar 1.146761
S.E. ofregression 1147308 Akaike info criterion 2.864795
Sum squared resid 3496.135 Schwarz criterion 2875669
Log likelihood -3800.880 Hannan-Quinn criter. 21868803

Durpin-Watson stat 2.078266
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15.1.1 Value-at-Risk (VaR)

» for the Student-t distribution with v degrees of freedom, the 1% VaR is calculated

as
VaR(0.01 _ v—2
Tt aR(@-01) Bejp—1 + F, 1(0-01)\/ . Otlt—1

where v is the parameter for degrees of freedon of the distribution, and F;l is the
inverse of the Student-t cdf function with v degrees of freedom
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15.1.1 Value-at-Risk (VaR)

in EViews, to calculate the 1-step-ahead 1%-VaR after estimating the GARCH model
with Student-t innovations:

» click on Forecast button, enter r_f into “Forecast name” box and sigmasq_f into
“GARCH (optional)” box", change”Method" to “Static forecast”

> after that select Object — Generate Series and enter the following
VaR_1lpct = r_f + Q@qtdist(0.01,9.22)*(7.22/9.22)"0.5*sigmasq_f"0.5

> note: Q@qtdist(0.01,9.22) calculates the 1% quantile of the Student-¢ distribution
with 9.22 degrees of freedom, if we wanted to construct the 5% VaR we would
need to change this into @tdist(0.05,9.22)

> finally, to create an indicator whether the actual return is below the 1% VaR, select
Object — Generate Series and enter x = (r < VaR_1pct)
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15.1.1 Value-at-Risk (VaR)

» for example, for April 2, 2008, the 1-day-ahead conditional mean is Hejp—1 = 0.045,
the 1-day-ahead conditional standard deviation o, _; = 1.802, so that the

1-day-ahead 1% VaR with 9 df is 0.045 — 2.821 x 1/7/9 x 1.802 = —4.440%

» the 1% VaR is larger in magnitude compared to -4.16% obtained for normal
distribution, because of the fat-tail property of the Student-t

» number of violations now is 30 so 1.13% of the sample, which is considerably
closer to the theoretical value of 26 than 42 violations under Normal distribution
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15.1.1 Value-at-Risk (VaR)

Daily return for S&P 500 index
1 % VaR with t-distribution

e  Days with daily return below 1% VaR
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15.1.1 Value-at-Risk (VaR)

Difference between actual return and 1% VaR with t-distribution
(loss in excess of 1% VaR)
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15.1.1 Value-at-Risk (VaR)

» regulators usually require the calculation of VaR for a 10-day horizon

this is accomplished by using the rule of “square root to time” to extend the daily
VaR forecasts to horizons with multiple trading days

> if we are interested in a 10-day horizon, we multiply the daily forecast by /10

» thus, on April 2, 2008, the 10-day-ahead 1% VaR under normality will be
V10 x 4.117% = —13.01%

> thus if on April 2 we have a portfolio of $100,000, there is 1% chance that 10 days
later, on April 12, we could face a loss of at least $13,010

» under Student-t with v = 9, the 10-day-ahead 1% VaR will be -14.04%, which
means that we could lose at least $14,040 in our $100,000 portfolio
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15.1.2 Expected Shortfall (ES)

>

>

VaR is the minimum loss that we should expect with a% probability, but actual
losses could be higher

it is of interest to have a measure of the average loss within the observations
contained in the a% region

that is: the expected value of r; for only those values where r; < rtvaR(a)

ES(a) = E(relre < ry “7))

> this measure is called the expected shortfall (ES)

> expected shortfall is also referred to as Conditional Value at Risk (CVaR) and

expected tail loss (ETL)

size of area
. < FaR(@)Y _
P(, <t )=a

WES(a) _ e | g JVaR(a) JVaR(e)
[ =EQ@; |, <1, ) 7
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15.1.2 Expected Shortfall (ES)

» with innovation z; drawn from normal distribution density, the formula to compute

the expected shortfall as follows

» for a standard normal random variable z we have
11 2
E(zlz < za) = ————€ 2

« aA\/2m

where z,, is the a% quantile of the standard normal distribution

> thus since ¢ = piyp_1 + 0y p—12¢ We get

ES(a) = E(ri|re < TtvaR(a)) = peje—1 + E(2]z < za)ogs 1

> for a = 0.05 we have zo = —1.645, thus ES5(0.05) = py)y—1 — 2.06220 ;1
> for a = 0.01 we have zo = —2.326, thus ES(0.05) = py)y_1 — 2.64260,);_;
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15.1.2 Expected Shortfall (ES)

> for instance, for April 2, 2008, the 1-day-ahead conditional mean is 141 = 0.036,
the 1-day-ahead conditional standard deviation oy;_; = 1.785,

> we calculated the 1-day-ahead 1% VaR ased on GARCH(1,1) with normal
innovations to be 0.036 — 2.326 x 1.785 = —4.117%

» corresponding expected shortfall for the 1% VaR is
0.036 — 2.0622 x 1.785 = —4.681%, which is the average of the values of r; within
the interval (—oo, —4.117)

> so if on April 1 we have a portfolio of $100,000, there is 1% chance that on April 2
we would have a minimum loss of $4,117 and an average loss of $4,681.
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