
Eco 4306 Economic and Business Forecasting
Lecture 26

Chapter 14: Forecasting Volatility II
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Motivation

I we saw that the conditional variance of several economic variables is time-varying
I important for forecasting - when we construct interval forecasts, e.g.
ft,h ± 1.96σt+h|t, the time-varying standard deviation of the process will make the
interval forecast either wider or narrower

I moving average (MA) and exponentially weighted moving average (EWMA)
specification of time varying volatility are easy to calculate, but have limitations -
they are not designed to model time dependence in volatility

I autocorrelation functions of the squared variable of interest are a good starting
point is to to analyze the time dependence in volatility

I for example, as we saw last time, autocorrelograms of weekly squared returns to
the SP500 index, daily squared returns to the yen/U.S. dollar exchange rate, and to
the 10-year Treasury note all show significant positive autocorrelation coefficients

I autocorrelation functions show a slow decay toward zero, indicating that the
squared returns may be modeled as autoregressive processes
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14.1 The ARCH Family

I our main objective is to estimate and forecast the volatility of the stochastic
process

rt = µt|t−1 + εt

where µt|t−1 is the conditional mean (that can follow for example an AR or an MA
or an ARMA specification)

I innovation εt is a white noise process, which by definition is uncorrelated
I we define the conditional variance at time t, as the expectation of the squared

process in deviation from its mean given the information set up to t− 1

σ2
t|t−1 = E[(rt − µt|t−1)2|It−1]
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14.1 The ARCH Family

I we let εt = σt|t−1zt where zt is an independent innovation with zero mean and
unit variance

I error term εt is thus conditionally heteroscedastic because its conditional variance
is σ2

t|t−1 which is time varying:

var(εt|It−1) = E(ε2
t |It−1) = E(σ2

t|t−1z
2
t |It−1) = σ2

t|t−1E(z2
t |It−1) = σ2

t|t−1

I although the conditional variance of εt is time varying, the unconditional variance
is constant

I this is analogous to the conditional mean vs unconditional mean for
AR/MA/ARMA models case: conditional mean is a function of the information set
but the unconditional mean is a constant - for example, for AR(1) model
µt|t−1 = φ0 + φ1yt−1 but µ = φ0

1−φ1
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14.1 The ARCH Family

I in the autoregressive conditional heteroscedasticity (ARCH) model, the
conditional variance is assumed to follow an autoregressive process

I σ2
t|t−1 follows an ARCH process of order p, ARCH(p) if

σ2
t|t−1 = ω + α1ε

2
t−1 + . . .+ αpε

2
t−p

I in ARCH model, conditional variance is thus a function of of previous shocks εt−i
for i = 1, 2, . . . , p

I conditional variance σ2
t|t−1 is predetermined, known as of time t− 1

I because εt−i are squared, the sign of the shocks is irrelevant, only the magnitude
matters

I to guarantee that the conditional variance is positive, we need to impose conditions
on the parameters: ω > 0 and αi ≥ 0 for all i
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14.1 The ARCH Family

I consider the simplest possible case, the ARCH(1) process

rt = µt|t−1 + εt where εt = σt|t−1zt

σ2
t|t−1 = ω + α1ε

2
t−1

I innovation zt is independent and identically distributed with zt ∼ N(0, 1)
I if εt−1 is large (in absolute value), then σt|t−1 is large and so εt is also expected

to be large (in absolute value)
I we next simulate and examine several ARCH processes to better understand their

properties
I conditional mean µt|t−1 can in general follow an AR/MA/ARMA model, for

example in AR(1) case we have

µt|t−1 = φ0 + φ1yt−1

and so the conditional mean equation in the model above becomes

rt = φ0 + φ1yt−1 + εt

I but to simplify the exposition and focus just on the dynamics of the conditional
variance, consider the case where µt|t−1 is just a constant value µt|t−1 = 2
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14.1.1 ARCH(1)

I three ARCH(1) processes with ω = 2 and with α1 = 0.3, 0.6, and 0.9
I conditional mean µt|t−1 can in general follow an AR/MA/ARMA model, but to

simplify the exposition and focus just on the dynamics of the conditional variance,
consider the case where µt|t−1 is just a constant value µt|t−1 = 2
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14.1.1 ARCH(1)

I left figure shows the simulated time series rt, and the right figure shows the
corresponding conditional standard deviation σt|t−1
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14.1.1 ARCH(1)

I left figure shows the simulated time series rt, and the right figure shows the
corresponding conditional standard deviation σt|t−1
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14.1.1 ARCH(1)

I unconditional variance of {rt} is σ2
ε = ω

1−α1
I thus when α1 becomes larger the time series of returns becomes more volatile
I unconditional distribution of rt is not normal, kurtosis is much higher than 3, and

the Jarque-Bera test rejects normality very strongly (p-values of the test are zero)
I kurtosis increases for high values of the parameter α1, other things being equal
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14.1.1 ARCH(1)

I once the conditional mean and the conditional standard deviation are estimated,
we can construct the estimated standardized residuals ẑt are obtained as

ẑt =
rt − µ̂t|t−1

σ̂t|t−1

I if the dynamics of the conditional mean and variance are correctly specified, then
ẑt should a standard normal random variable
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14.1.1.2 What Do the Corresponding Autocorrelation Functions Look Like?

I consider now ARCH(1)

rt = µt|t−1 + εt where εt = σt|t−1zt

σ2
t|t−1 = ω + α1ε

2
t−1

with µt|t−1, ω = 2, α1 = 0.3
I autocorrelograms of returns rt (left panel) and squared returnsr2

t (right panel):
time dependence in r2

t reveals time dependence in conditional variance
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14.1.1.2 What Do the Corresponding Autocorrelation Functions Look Like?
I consider now ARCH(1)

rt = µt|t−1 + εt where εt = σt|t−1zt

σ2
t|t−1 = ω + α1ε

2
t−1

with µt|t−1, ω = 2, α1 = 0.3
I autocorrelograms of standardized residuals ẑt = (rt − µ̂t|t−1)/σ̂t|t−1 (left panel)

and squared standardized residuals ẑ2
t = ((rt − µ̂t|t−1)/σ̂t|t−1)2 (right panel): if

the dynamics of the conditional mean and variance are correctly specified, both ẑt
and ẑ2

t should show no time dependence
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14.1.1.3 What Is the Optimal Forecast Corresponding to an ARCH(1)
Process?

forecasting under a quadratic loss function

I the one-step-ahead variance forecast is σ2
t+1|t = ω + α1ε2

t

I the two-step-ahead forecast is σ2
t+2|t = E(ω + α1ε2

t+1) = ω + α1σ2
t+1|t

I the three-step-ahead forecast is σ2
t+3|t = E(ω + α1ε2

t+2) = ω + α1σ2
t+2|t

I this implies that in general for h step ahead forecast we have
σ2
t+h|t = ω + α1σ2

t+h−1|t or after substituting in

σ2
t+h|t = ω(1 + α1 + α2

1 + . . .+ αh−2
1 ) + αh−1

1 σ2
t+1|t

I thus as h→∞ then σ2
t+h|t →

ω
1−α1

which is the unconditional variance of rt
I convergence toward the unconditional variance is slow when α1 is large, and fast

when α1 is small
I this is analogous to the result that we saw when forecasting the conditional mean

using an AR model: as the forecast horizon increases, the memory of the model is
lost, and the forecast converges to the unconditional mean
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14.1.2 ARCH(p)

I properties of the ARCH(1) extend to ARCH(p) processes with small modifications
I unconditional variance is σ2

ε = ω
1−α1−...−αp

I first p lags in PACF for demeaned squared returns are significantly different from
zero
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14.1.2 ARCH(p)

I consider daily returns for S&P 500
I autocorrelograms of squared daily returns shows more persistence in the squared

daily returns than in weekly or monthly data
I we could entertain an ARCH(8) or ARCH(9) for these data
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14.1.2 ARCH(p)

steps involved in building an autoregressive conditional heteroscedasticity (ARCH)
model:

1. specify the conditional mean equation - use ACF, PACF, Q-statistics to identify
serial dependence in the data

2. estimate the model for the conditional mean
3. use residuals of the mean equation from step 2 to specify a volatility model - use

ACF, PACF, Q-statistics for squared residuals
4. perform a joint estimation of the mean and volatility equations
5. check the fitted model for adequacy - both standardized residuals and squared

standardized residuals should be white noise

after the joint estimation in step 4 it is possible that the conditional mean equation from
steps 1 and 2 has to be modified - some terms can for example become insignificant
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14.1.2 ARCH(p)

I to estimate an ARCH(9) model for daily returns of S&P 500 index in EViews enter
the following information in the specification window

I estimation settings: choose “ARCH - Autoregressive Conditional Heteroscedasticity”"
instead of “LS - Least Squares”

I in the mean equation: r c AR(1)
I in the variance equation select ARCH 9 and GARCH 0
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14.1.2 ARCH(p)
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14.1.2 ARCH(p)

I the estimated ARCH(1) model is

rt = 0.037 + εt

σ2
t|t−1 = 0.271 + 0.030ε2

t−1 + 0.149ε2
t−2 + 0.095ε2

t−3 + . . .+ 0.083ε2
t−9

I note that the sum of the coefficients αi is very high, α1 + α2 + . . .+ α9 ≈ 0.835
I this sum is also known as the persistence in variance
I when the persistence is high, the conditional variance will tend to be high (or low)

for many consecutive days
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14.1.2 ARCH(p)

advantages of ARCH models

I simple, but able to generate volatility clustering

weaknesses of ARCH models

I large number of lags often required to adequately describe the volatility process
I positive and negative shocks have same effects on volatility (no asymmetry)
I conditional standard deviation process tends to have low persistence and

high-frequency oscillations with high volatility coming in short bursts
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14.1.3 GARCH(1,1)

I in generalized autoregressive conditional heteroscedasticity (GARCH)
innovations follows a process similar to an ARMA model

I GARCH(1,1) model with normally distributed innovations has the following
specification

I the dynamics of the conditional mean is given by

rt = µt|t−1 + εt where εt = σt|t−1zt and zt ∼ N(0, 1)
I the dynamics of the conditional variance is given by

σ
2
t|t−1 = ω + α1ε

2
t−1 + β1σ

2
t−1|t−2

parameters satisfy ω > 0, α1 ≥ 0, and β1 ≥ 0

I the difference compared to ARCH(1) specification is that in GARCH(1,1) model
the conditional variance at time t depends not only on the past innovation εt−1
but also on the most recent level of volatility σ2

t−1|t−2
I for instance, if β1 = 0.80, we say that 80% of yesterday’s variance carries over to

today’s variance
I unconditional first and second moments are E(εt) = 0, var(εt) = ω

1−α1−β1

I conditional first and second moments are Et−1(εt) = 0,
vart−1(εt) = ω + α1ε2

t−1 + β1σ2
t−1
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14.1.3 GARCH(m, s)

I a general GARCH(m, s) model assumes that σ2
t|t−1 is given by

σ2
t|t−1 = ω +

m∑
i=1

αiε
2
t−i +

s∑
i=1

βiσ
2
t−i|t−i−1

I lower order GARCH models, GARCH(1,1), GARCH(2,1), GARCH(1,2), are used in
most applications

I main advantage of GARCH models is that they can generate similar volatility
dynamics as high order ARCH models with fewer parameters

I for example, with a GARCH (1,1) model we have three parameters ω, α1, β1 to
estimate, while with an ARCH(9) we have 10 parameters ω, α1, . . . , α9 to estimate
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14.1.3 GARCH(1,1)

I a GARCH(1,1) process is equivalent to an ARCH process of infinite order,
ARCH(∞), with exponentially decreasing weights α1, α1β1, α1β2

1 , α1β3
1 , . . . on

squared past innovations ε2
t−1, ε

2
t−2, ε

2
t−3, ε

2
t−4, . . .

I to understand this equivalence, note that we could use backward substitution in
the GARCH(1,1) conditional variance equation to obtain

σ2
t|t−1 = ω + α1ε

2
t−1 + β1σ

2
t−1|t−2

= ω + α1ε
2
t−1 + β1

(
ω + α1ε

2
t−2 + β1σ

2
t−2|t−3

)
= ω(1 + β1) + α1ε

2
t−1 + β1α1ε

2
t−2 + β2

1σ
2
t−2|t−3

= . . .

= ω(1 + β1 + β2
1 + . . .) + α1

∞∑
i=1

βi−1
1 ε2

t−i

=
ω

1− β1
+ α1

∞∑
i=1

βi−1
1 ε2

t−i

I persistence of the GARCH(1,1) process - how permanent are the shocks - is given
by α1

∑∞
i=1 β

i−1
1 = α1

1−β1
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14.1.3.1 What Does a Time Series of GARCH(1,1) Process Look Like?

I to assess the contribution of the α1 and β1 parameters we’ll compare two
GARCH(1,1) processes

I as in the case of ARCH(1) process before, we set the conditional mean to a
constant value, µt|t−1 = 2, to focus just on the dynamics of the conditional
variance

I in addition, as before we set ω = 2, and we again assume that innovation zt is
normally distributed zt ∼ N(0, 1) image

I consider two simulated time series with 2,500 observations for the return process rt
and for the conditional variance σ2

t|t−1

1. low persistence process: α1 = 0.4, β1 = 0.4, with persistence α1
1−β1

= 0.667
2. high persistence process: α1 = 0.1, β1 = 0.88, with persistence α1

1−β1
= 0.83

26 / 40



14.1.3.1 What Does a Time Series of GARCH(1,1) Process Look Like?
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14.1.3.1 What Does a Time Series of GARCH(1,1) Process Look Like?

I the unconditional variance is larger in the high persistence process than in the low
persistence process

I this is because the unconditional variance of a GARCH(1,1) process is
σ2
ε = ω

1−α1−β1
, and so in the low persistence process σ2

ε = 10, and in the high
persistence process σ2

ε = 100
I in addition, in the high persistence process, 88% of the past volatility is transferred

to the current volatility, while in the low persistence process, it is only 40%
I thus, in a high persistence process, high (low) volatility is followed by high (low)

volatility over longer periods of time than in a low persistence process
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14.1.3.2 What Do the Corresponding Autocorrelation Functions Look Like?
I correlograms of the squared time series r2

t for the low and high persistence cases
have profiles that correspond to those from autoregressive processes

I degree of persistence in variance is evident in the speed of the decay toward zero -
decay is faster in the low persistence process than in the high persistence process

I the correlogram for daily returns to the S&P500 index shows pattern similar to
those of the simulated high persistent process
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14.1.3 GARCH(1,1)

I to estimate a GARCH(1,1) enter the following information in the specification
window:

I estimation settings: choose “ARCH - Autoregressive Conditional Heteroscedasticity”"
instead of “LS - Least Squares”

I mean equation: r c
I variance and distribution specification: ARCH 1, GARCH 1
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14.1.3 GARCH(1,1)
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14.1.3 GARCH(1,1)

I the estimated model is

rt = 0.036 + εt

σ2
t|t−1 = 0.010 + 0.066ε2

t−1 + 0.927σ2
t−1|t−2

I the estimated persistence is thus α1
1−β1

= 0.066
1−0.927 = 0.9

I note that both information criteria for GARCH(1,1) model are lower than those for
the ARCH(9) model

I to check whether the equation for the conditional mean is adequately specified we
need to examine the autocorrelations of the standardized residuals ẑt = ε̂t

σ̂t|t−1

I to check whether the equation for the conditional variance is adequately specified
we need to examine the autocorrelations of the standardized squared residuals
ẑ2
t = ε̂2

t

σ̂2
t|t−1

I in both cases the autocorrelations should be close to zero and insignificant
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14.1.3 GARCH(1,1)

I autocorrelation function of the standardized squared residuals ẑ2
t = ε̂2

t

σ̂2
t|t−1

from

GARCH(1,1) model for daily S&P 500 returns
I GARCH(1,1) specification of the model for volatility is adequate - there is no

remaining time dependence left in squared residuals ẑ2
t
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14.1.3.3 What Is the Optimal Forecast Corresponding to a GARCH(1,1)
Process?

I under symmetric quadratic loss function, with information set It the optimal
variance forecasts σ2

t+h|t are
I the 1-step-ahead forecast

σ2
t+1|t = ω + α1ε

2
t + β1σ

2
t|t−1

I the 2-step-ahead forecast is

σ2
t+2|t = ω + α1E(ε2

t+1|It) + β1σ
2
t+1|t = ω + (α1 + β1)σ2

t+1|t

I the 3-step-ahead forecast is:

σ2
t+3|t = ω+α1E(ε2

t+2|It)+β1σ
2
t+2|t+1 = ω+(α1+β1)σ2

t+2|t = ω(1+α1+β1)+(α1+β1)2σ2
t+1|t

I in general, the h-step-ahead forecast of the conditional variance is

σ2
t+h|t = ω(1+(α1 +β1)+(α1 +β1)2 + . . .+(α1 +β1)h−2)+(α1 +β1)h−1σ2

t+1|t
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14.1.3.3 What Is the Optimal Forecast Corresponding to a GARCH(1,1)
Process?

I note that if α1 + β1 < 1 the forecast converges to the unconditional variance of
the process, as h→∞ we have

σ2
t+h|t = ω(1 + (α1 + β1) + (α1 + β1)2 + . . .)→

ω

1− (α1 + β1)

I if α1 + β1 = 1, that is in the IGARCH(1,1) case, the forecast is a linear function of
the forecast horizon

σ2
t+h|t = ω(1 + (α1 + β1) + (α1 + β1)2 + . . .+ (α1 + β1)h−2) + (α1 + β1)h−1σ2

t+1|t

= ω(h− 1) + σ2
t+1|t
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TARCH model

I reaction of volatility to positive vs negative shocks is likely not symmetric
I intuitively, negative shocks increase volatility more than positive shocks of the

same size
I this is called the leverage effect
I Threshold ARCH model, TARCH(1,1)

σ2
t|t−1 = ω + α1ε

2
t−1 + γ1ε

2
t−1I{εt−1<0} + β1σ

2
t−1|t−2

where γ1 represents the ‘leverage’ term is one way how to capture this asymmetric
reaction of volatility to positive vs negative shocks

I to see this note that the above model can be written as

σ2
t|t−1 = ω + α1ε

2
t−1 + β1σ

2
t−1|t−2 if εt−1 ≥ 0

σ2
t|t−1 = ω + (α1 + γ1)ε2

t−1 + β1σ
2
t−1|t−2 if εt−1 < 0

and so if γ1 > 0 negative shocks lead to a larger increase in volatility than positive
shocks
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TARCH model
I in EViews, to estimate a TARCH(1,1) model instead of a GARCH(1,1), simply

change “Threshold order” in “Variance and distribution specification” from 0 to 1
I result below are for TARCH(1,1) model for daily returns of Google stock
I α1 = 0.0296 and α1 + γ1 = 0.0296 + 0.0641 = 0.0937 so the effect of a negative

shock on volatility is about three times as large as the effect of a positive shock
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PARCH model

I reaction of volatility to positive vs negative shocks is likely not symmetric
I intuitively, negative shocks increase volatility more than positive shocks of the

same size
I this is called the leverage effect
I Power ARCH model, PARCH(1,1)

σδt|t−1 = ω + α1
(
|εt−1| − γ1εt−1

)δ
+ β1σ

δ
t−1|t−2

where γ represents the ‘leverage’ term and δ > 0 is another way how to capture
this asymmetric reaction of volatility to positive vs negative shocks

I to see this note that if δ = 2 the above model can be written as

σ2
t|t−1 = ω + α1(1− γ1)ε2

t−1 + β1σ
2
t−1|t−2 if εt−1 ≥ 0

σ2
t|t−1 = ω + α1(1 + γ1)ε2

t−1 + β1σ
2
t−1|t−2 if εt−1 < 0

and so if γ1 > 0 negative shocks lead to a larger increase in volatility than positive
shocks
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PARCH model
I in EViews, to estimate a PARCH(1,1) model instead of a GARCH(1,1), change

“Threshold order” in “Variance and distribution specification” from 0 to 1, change
“Model” from GARCH/TARCH to PARCH, and set “Fix power parameter” to 2

I result below are for TPARCH(1,1) model for daily returns of Google stock
I α1 = 0.0570, γ1 = 0.290, thus α1(1− γ1) = 0.0404 and α1(1 + γ1) = 0.0735, the

effect of a negative shock is almost twice as large as the effect of a positive shock
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GARCH-M model

I return of an asset can depend on volatility - risk premium argument: investors need
to be compensated by higher return if they face larger risk

I GARCH(1,1)-in mean model, GARCH(1,1)-M

rt = µ+ ξσ2
t|t−1 + εt

εt = σt|t−1zt

σ2
t|t−1 = ω + α1ε

2
t−1 + β1σ

2
t−1|t−2

I parameter ξ captures the risk premium
I variants of the model can have the term σt|t−1 or log σ2

t|t−1 instead of σ2
t|t−1 in

the conditional mean equation
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