Eco 4306 Economic and Business Forecasting

Lecture 26 Chapter 14: Forecasting Volatility II

Motivation

- \triangleright we saw that the conditional variance of several economic variables is time-varying
- \triangleright important for forecasting when we construct interval forecasts, e.g. $f_{t,h}\pm 1.96\sigma_{t+h|t}$, the time-varying standard deviation of the process will make the interval forecast either wider or narrower
- \triangleright moving average (MA) and exponentially weighted moving average (EWMA) specification of time varying volatility are easy to calculate, but have limitations they are not designed to model time dependence in volatility
- \blacktriangleright autocorrelation functions of the squared variable of interest are a good starting point is to to analyze the time dependence in volatility
- \triangleright for example, as we saw last time, autocorrelograms of weekly squared returns to the SP500 index, daily squared returns to the yen/U.S. dollar exchange rate, and to the 10-year Treasury note all show significant positive autocorrelation coefficients
- \blacktriangleright autocorrelation functions show a slow decay toward zero, indicating that the squared returns may be modeled as autoregressive processes

 \triangleright our main objective is to estimate and forecast the volatility of the stochastic process

$$
r_t = \mu_{t|t-1} + \varepsilon_t
$$

where $\mu_{t|t-1}$ is the conditional mean (that can follow for example an AR or an MA or an ARMA specification)

- **Innovation** ε_t is a white noise process, which by definition is uncorrelated
- \triangleright we define the conditional variance at time t , as the expectation of the squared process in deviation from its mean given the information set up to $t - 1$

$$
\sigma_{t|t-1}^2 = E[(r_t - \mu_{t|t-1})^2 | I_{t-1}]
$$

- ► we let $\varepsilon_t = \sigma_{t|t-1} z_t$ where z_t is an independent innovation with zero mean and unit variance
- **F** error term ε_t is thus conditionally heteroscedastic because its conditional variance is $\sigma_{t|t-1}^2$ which is time varying:

 $var(\varepsilon_t|I_{t-1}) = E(\varepsilon_t^2|I_{t-1}) = E(\sigma_{t|t-1}^2 z_t^2|I_{t-1}) = \sigma_{t|t-1}^2 E(z_t^2|I_{t-1}) = \sigma_{t|t-1}^2$

- **In although the conditional variance of** ε_t **is time varying, the** *unconditional* **variance** is constant
- \triangleright this is analogous to the conditional mean vs unconditional mean for AR/MA/ARMA models case: conditional mean is a function of the information set but the unconditional mean is a constant - for example, for AR(1) model $\mu_{t|t-1} = \phi_0 + \phi_1 y_{t-1}$ but $\mu = \frac{\phi_0}{1-\phi_1}$

- **In the autoregressive conditional heteroscedasticity (ARCH)** model, the conditional variance is assumed to follow an autoregressive process
- \blacktriangleright *σ*²_{t|t−1} follows an ARCH process of order *p*, ARCH(*p*) if

$$
\sigma_{t|t-1}^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \ldots + \alpha_p \varepsilon_{t-p}^2
$$

- **►** in ARCH model, conditional variance is thus a function of of previous shocks ε_{t-i} for $i = 1, 2, ..., p$
- ► conditional variance $\sigma_{t|t-1}^2$ is predetermined, known as of time $t-1$
- **►** because ε_{t-i} are squared, the sign of the shocks is irrelevant, only the magnitude matters
- \triangleright to guarantee that the conditional variance is positive, we need to impose conditions on the parameters: $\omega > 0$ and $\alpha_i > 0$ for all *i*

 \triangleright consider the simplest possible case, the ARCH(1) process

$$
r_t = \mu_{t|t-1} + \varepsilon_t \qquad \text{where } \varepsilon_t = \sigma_{t|t-1} z_t
$$

$$
\sigma_{t|t-1}^2 = \omega + \alpha_1 \varepsilon_{t-1}^2
$$

- \triangleright innovation z_t is independent and identically distributed with $z_t \sim N(0, 1)$
- \triangleright if ε *t*−1 is large (in absolute value), then σ _{*t*|*t*−1} is large and so ε *t* is also expected to be large (in absolute value)
- \triangleright we next simulate and examine several ARCH processes to better understand their properties
- ► conditional mean $\mu_{t|t-1}$ can in general follow an AR/MA/ARMA model, for example in AR(1) case we have

$$
\mu_{t|t-1} = \phi_0 + \phi_1 y_{t-1}
$$

and so the conditional mean equation in the model above becomes

$$
r_t = \phi_0 + \phi_1 y_{t-1} + \varepsilon_t
$$

 \triangleright but to simplify the exposition and focus just on the dynamics of the conditional variance, consider the case where $\mu_{t|t-1}$ is just a constant value $\mu_{t|t-1} = 2$

- **►** three ARCH(1) processes with $\omega = 2$ and with $\alpha_1 = 0.3$, 0.6, and 0.9
- ^I conditional mean *µt*|*t*−¹ can in general follow an AR/MA/ARMA model, but to simplify the exposition and focus just on the dynamics of the conditional variance, consider the case where $\mu_{t|t-1}$ is just a constant value $\mu_{t|t-1} = 2$

In left figure shows the simulated time series r_t , and the right figure shows the corresponding conditional standard deviation *σt*|*t*−¹

In left figure shows the simulated time series r_t , and the right figure shows the corresponding conditional standard deviation *σt*|*t*−¹

In left figure shows the simulated time series r_t , and the right figure shows the corresponding conditional standard deviation *σt*|*t*−¹

- **►** unconditional variance of ${r_t}$ is $σ_ε^2 = ω_1 − α_1$
- In thus when α_1 becomes larger the time series of returns becomes more volatile
- **In** unconditional distribution of r_t is not normal, kurtosis is much higher than 3, and the Jarque-Bera test rejects normality very strongly (p-values of the test are zero)
- In kurtosis increases for high values of the parameter α_1 , other things being equal

 \triangleright once the conditional mean and the conditional standard deviation are estimated, we can construct the estimated standardized residuals \hat{z}_t are obtained as

$$
\hat{z}_t = \frac{r_t - \hat{\mu}_{t|t-1}}{\hat{\sigma}_{t|t-1}}
$$

 \blacktriangleright if the dynamics of the conditional mean and variance are correctly specified, then \hat{z}_t should a standard normal random variable

14.1.1.2 What Do the Corresponding Autocorrelation Functions Look Like?

 \triangleright consider now ARCH(1)

$$
r_t = \mu_{t|t-1} + \varepsilon_t \qquad \text{where } \varepsilon_t = \sigma_{t|t-1} z_t
$$

$$
\sigma_{t|t-1}^2 = \omega + \alpha_1 \varepsilon_{t-1}^2
$$

with $\mu_{t|t-1}$, $\omega = 2$, $\alpha_1 = 0.3$

 \blacktriangleright autocorrelograms of returns r_t (left panel) and squared returns r_t^2 (right panel): time dependence in r_t^2 reveals time dependence in conditional variance

Sample: 1 1000 Included observations: 1000					Sample: 1 1000 Included observations: 1000					
Autocorrelation	Partial Correlation		AC	PAC	Autocorrelation	Partial Correlation		AC	PAC	
		6 9 10 11 12	0.071 0.050 0.020 0.011 $-0.054 - 0.051$ 0.009 0.001 0.036	$-0.090 - 0.090$ $-0.062 - 0.071$ 0.059 0.059 $-0.033 - 0.015$ 0.018 0.004 0.001 $-0.000 - 0.009$ 0.008 0.042			۹ 10 11 12	0.450 $-0.040 - 0.044$ -0.037 0.001 $-0.030 - 0.009$ $-0.040 - 0.026$ $-0.033 - 0.005$ 0.004 0.015 0.084	0.450 $0.177 - 0.032$ $0.063 - 0.007$ $0.009 - 0.015$ 0.029 0.003 0.090	

Sample: 1 1000

14.1.1.2 What Do the Corresponding Autocorrelation Functions Look Like?

 \triangleright consider now ARCH(1)

$$
r_t = \mu_{t|t-1} + \varepsilon_t \quad \text{where } \varepsilon_t = \sigma_{t|t-1} z_t
$$

$$
\sigma_{t|t-1}^2 = \omega + \alpha_1 \varepsilon_{t-1}^2
$$

with $\mu_{t|t-1}$, $\omega = 2$, $\alpha_1 = 0.3$

► autocorrelograms of standardized residuals $\hat{z}_t = (r_t - \hat{\mu}_{t|t-1})/\hat{\sigma}_{t|t-1}$ (left panel) and squared standardized residuals $\hat{z}_t^2 = ((r_t - \hat{\mu}_{t|t-1})/\hat{\sigma}_{t|t-1})^2$ (right panel): if the dynamics of the conditional mean and variance are correctly specified, both \hat{z}_t and \hat{z}_t^2 should show no time dependence

Sample: 1 1000

Sample: 1 1000

14.1.1.3 What Is the Optimal Forecast Corresponding to an ARCH(1) Process?

forecasting under a quadratic loss function

- \blacktriangleright the one-step-ahead variance forecast is $\sigma_{t+1|t}^2 = \omega + \alpha_1 \varepsilon_t^2$
- \blacktriangleright the two-step-ahead forecast is $\sigma_{t+2|t}^2 = E(\omega + \alpha_1 \varepsilon_{t+1}^2) = \omega + \alpha_1 \sigma_{t+1|t}^2$
- \blacktriangleright the three-step-ahead forecast is $\sigma_{t+3|t}^2 = E(\omega + \alpha_1 \varepsilon_{t+2}^2) = \omega + \alpha_1 \sigma_{t+2|t}^2$
- \blacktriangleright this implies that in general for h step ahead forecast we have $\sigma_{t+h|t}^2 = \omega + \alpha_1 \sigma_{t+h-1|t}^2$ or after substituting in

$$
\sigma_{t+h|t}^2 = \omega(1 + \alpha_1 + \alpha_1^2 + \ldots + \alpha_1^{h-2}) + \alpha_1^{h-1}\sigma_{t+1|t}^2
$$

- ► thus as $h \to \infty$ then $\sigma_{t+h|t}^2 \to \frac{\omega}{1-\alpha_1}$ which is the unconditional variance of r_t
- **E** convergence toward the unconditional variance is slow when α_1 is large, and fast when α_1 is small
- \triangleright this is analogous to the result that we saw when forecasting the conditional mean using an AR model: as the forecast horizon increases, the memory of the model is lost, and the forecast converges to the unconditional mean

- **P** properties of the ARCH(1) extend to ARCH(p) processes with small modifications
- \blacktriangleright unconditional variance is $\sigma_{\varepsilon}^2 = \frac{\omega}{1-\alpha_1-\ldots-\alpha_p}$
- \triangleright first p lags in PACF for demeaned squared returns are significantly different from zero

- \triangleright consider daily returns for S&P 500
- \blacktriangleright autocorrelograms of squared daily returns shows more persistence in the squared daily returns than in weekly or monthly data
- \triangleright we could entertain an ARCH(8) or ARCH(9) for these data

Autocorrelograms of the Squared Returns r.2

Sample: 5815 8471 Included observations: 2657

steps involved in building an autoregressive conditional heteroscedasticity (ARCH) model:

- 1. specify the conditional mean equation use ACF, PACF, Q-statistics to identify serial dependence in the data
- 2. estimate the model for the conditional mean
- 3. use residuals of the mean equation from step 2 to specify a volatility model use ACF, PACF, Q-statistics for squared residuals
- 4. perform a joint estimation of the mean and volatility equations
- 5. check the fitted model for adequacy both standardized residuals and squared standardized residuals should be white noise

after the joint estimation in step 4 it is possible that the conditional mean equation from steps 1 and 2 has to be modified - some terms can for example become insignificant

- ight to estimate an ARCH(9) model for daily returns of S&P 500 index in EViews enter the following information in the specification window
	- ▶ estimation settings: choose "ARCH Autoregressive Conditional Heteroscedasticity"" instead of "LS - Least Squares"
	- in the mean equation: $r \in AR(1)$
	- \triangleright in the variance equation select ARCH 9 and GARCH 0

 \blacktriangleright the estimated ARCH(1) model is

$$
r_t = 0.037 + \varepsilon_t
$$

$$
\sigma_{t|t-1}^2 = 0.271 + 0.030\varepsilon_{t-1}^2 + 0.149\varepsilon_{t-2}^2 + 0.095\varepsilon_{t-3}^2 + \dots + 0.083\varepsilon_{t-9}^2
$$

- In note that the sum of the coefficients α_i is very high, $\alpha_1 + \alpha_2 + \ldots + \alpha_9 \approx 0.835$
- \blacktriangleright this sum is also known as the **persistence in variance**
- \triangleright when the persistence is high, the conditional variance will tend to be high (or low) for many consecutive days

advantages of ARCH models

 \triangleright simple, but able to generate volatility clustering

weaknesses of ARCH models

- \blacktriangleright large number of lags often required to adequately describe the volatility process
- \triangleright positive and negative shocks have same effects on volatility (no asymmetry)
- \triangleright conditional standard deviation process tends to have low persistence and high-frequency oscillations with high volatility coming in short bursts

- \triangleright in generalized autoregressive conditional heteroscedasticity (GARCH) innovations follows a process similar to an ARMA model
- GARCH $(1,1)$ model with normally distributed innovations has the following specification
	- \blacktriangleright the dynamics of the conditional mean is given by

$$
r_t = \mu_{t|t-1} + \varepsilon_t \qquad \text{where } \varepsilon_t = \sigma_{t|t-1} z_t \text{ and } z_t \sim N(0, 1)
$$

 \blacktriangleright the dynamics of the conditional variance is given by

$$
\sigma_{t \mid t-1}^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1 \mid t-2}^2
$$

parameters satisfy $\omega > 0$, $\alpha_1 > 0$, and $\beta_1 > 0$

- \triangleright the difference compared to ARCH(1) specification is that in GARCH(1,1) model the conditional variance at time t depends not only on the past innovation ε_{t-1} but also on the most recent level of volatility $\sigma^2_{t-1|t-2}$
- **►** for instance, if $\beta_1 = 0.80$, we say that 80% of yesterday's variance carries over to today's variance
- **►** unconditional first and second moments are $E(\varepsilon_t) = 0$, $var(\varepsilon_t) = \frac{\omega}{1 \alpha_1 \beta_1}$
- \triangleright conditional first and second moments are $E_{t-1}(\varepsilon_t) = 0$, $var_{t-1}(\varepsilon_t) = \omega + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2$

14.1.3 GARCH(*m, s*)

► a general GARCH (m, s) model assumes that $\sigma^2_{t|t-1}$ is given by

$$
\sigma_{t|t-1}^2 = \omega + \sum_{i=1}^m \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^s \beta_i \sigma_{t-i|t-i-1}^2
$$

- \triangleright lower order GARCH models, GARCH $(1,1)$, GARCH $(2,1)$, GARCH $(1,2)$, are used in most applications
- \triangleright main advantage of GARCH models is that they can generate similar volatility dynamics as high order ARCH models with fewer parameters
- **F** for example, with a GARCH (1,1) model we have three parameters ω , α_1 , β_1 to estimate, while with an ARCH(9) we have 10 parameters $\omega, \alpha_1, \ldots, \alpha_9$ to estimate

- \triangleright a GARCH(1,1) process is equivalent to an ARCH process of infinite order, $\mathsf{ARCH}(\infty)$, with exponentially decreasing weights $\alpha_1, \alpha_1\beta_1, \alpha_1\beta_1^2, \alpha_1\beta_1^3, \dots$ on squared past innovations $\varepsilon_{t-1}^2, \varepsilon_{t-2}^2, \varepsilon_{t-3}^2, \varepsilon_{t-4}^2, \ldots$
- \triangleright to understand this equivalence, note that we could use backward substitution in the GARCH(1,1) conditional variance equation to obtain

$$
\sigma_{t|t-1}^{2} = \omega + \alpha_{1}\varepsilon_{t-1}^{2} + \beta_{1}\sigma_{t-1|t-2}^{2}
$$

\n
$$
= \omega + \alpha_{1}\varepsilon_{t-1}^{2} + \beta_{1}(\omega + \alpha_{1}\varepsilon_{t-2}^{2} + \beta_{1}\sigma_{t-2|t-3}^{2})
$$

\n
$$
= \omega(1+\beta_{1}) + \alpha_{1}\varepsilon_{t-1}^{2} + \beta_{1}\alpha_{1}\varepsilon_{t-2}^{2} + \beta_{1}^{2}\sigma_{t-2|t-3}^{2}
$$

\n
$$
= \dots
$$

\n
$$
= \omega(1+\beta_{1}+\beta_{1}^{2}+\dots)+\alpha_{1}\sum_{i=1}^{\infty}\beta_{1}^{i-1}\varepsilon_{t-i}^{2}
$$

\n
$$
= \frac{\omega}{1-\beta_{1}} + \alpha_{1}\sum_{i=1}^{\infty}\beta_{1}^{i-1}\varepsilon_{t-i}^{2}
$$

 \triangleright persistence of the GARCH(1,1) process - how permanent are the shocks - is given by $\alpha_1 \sum_{i=1}^{\infty} \beta_1^{i-1} = \frac{\alpha_1}{1-\beta_1}$

14.1.3.1 What Does a Time Series of GARCH(1,1) Process Look Like?

- **If** to assess the contribution of the α_1 and β_1 parameters we'll compare two GARCH(1,1) processes
- \triangleright as in the case of ARCH(1) process before, we set the conditional mean to a constant value, $\mu_{t|t-1} = 2$, to focus just on the dynamics of the conditional variance
- in addition, as before we set $\omega = 2$, and we again assume that innovation z_t is normally distributed $z_t \sim N(0, 1)$ image
- \triangleright consider two simulated time series with 2,500 observations for the return process r_t and for the conditional variance $\sigma_{t|t-1}^2$
	- 1. low persistence process: $\alpha_1 = 0.4$, $\beta_1 = 0.4$, with persistence $\frac{\alpha_1}{1-\beta_1} = 0.667$
	- 2. high persistence process: $α_1 = 0.1$, $β_1 = 0.88$, with persistence $\frac{α_1}{1-β_1} = 0.83$

14.1.3.1 What Does a Time Series of GARCH(1,1) Process Look Like?

14.1.3.1 What Does a Time Series of GARCH(1,1) Process Look Like?

- \triangleright the unconditional variance is larger in the high persistence process than in the low persistence process
- \triangleright this is because the unconditional variance of a GARCH(1,1) process is $\sigma_{\varepsilon}^2 = \frac{\omega}{1-\alpha_1-\beta_1}$, and so in the low persistence process $\sigma_{\varepsilon}^2 = 10$, and in the high persistence process $\sigma_{\varepsilon}^2=100$
- \triangleright in addition, in the high persistence process, 88% of the past volatility is transferred to the current volatility, while in the low persistence process, it is only 40%
- in thus, in a high persistence process, high (low) volatility is followed by high (low) volatility over longer periods of time than in a low persistence process

14.1.3.2 What Do the Corresponding Autocorrelation Functions Look Like?

- \blacktriangleright correlograms of the squared time series r_t^2 for the low and high persistence cases have profiles that correspond to those from autoregressive processes
- \triangleright degree of persistence in variance is evident in the speed of the decay toward zero decay is faster in the low persistence process than in the high persistence process
- \triangleright the correlogram for daily returns to the S&P500 index shows pattern similar to those of the simulated high persistent process

$$
r_{t} = 2 + \varepsilon_{t}
$$

$$
\sigma_{\theta t-1}^{2} = 2 + \alpha \varepsilon_{t-1}^{2} + \beta \sigma_{t-1|t-2}^{2}
$$

Time series r^2

Time series r^2

(1) $\alpha = 0.4$, $\beta = 0.4$ (low persistence)

(2) $\alpha = 0.1$, $\beta = 0.88$ (high persistence)

OOooooo

AC₁ **PAC** 0.263 0.263

0.301 0.249 0.249 0.143 0.254 0.129 0.209 0.065 0.255 0.119 0.139 0.248 0.079 0.260 0.085 0.215 0.025 $0.19900.009$ 0.212 0.041 13 0.233 0.064 14 0.245 0.073

Sample: 1.20000 Included observations: 20000 Sample: 1.20000 Included observations: 20000

- \triangleright to estimate a GARCH $(1,1)$ enter the following information in the specification window:
	- ▶ estimation settings: choose "ARCH Autoregressive Conditional Heteroscedasticity"" instead of "LS - Least Squares"
	- \blacktriangleright mean equation: $r c$
	- \triangleright variance and distribution specification: ARCH 1, GARCH 1

 \blacktriangleright the estimated model is

$$
r_t = 0.036 + \varepsilon_t
$$

$$
\sigma_{t|t-1}^2 = 0.010 + 0.066\varepsilon_{t-1}^2 + 0.927\sigma_{t-1|t-2}^2
$$

- ► the estimated persistence is thus $\frac{\alpha_1}{1-\beta_1} = \frac{0.066}{1-0.927} = 0.9$
- \triangleright note that both information criteria for GARCH(1,1) model are lower than those for the ARCH(9) model
- \triangleright to check whether the equation for the conditional mean is adequately specified we need to examine the autocorrelations of the standardized residuals $\hat{z}_t = \frac{\hat{\varepsilon}_t}{\hat{\sigma}_{t|t-1}}$
- \triangleright to check whether the equation for the conditional variance is adequately specified we need to examine the autocorrelations of the standardized squared residuals $\hat{z}_t^2 = \frac{\hat{\varepsilon}_t^2}{\hat{\sigma}_{t|t-1}^2}$
- \blacktriangleright in both cases the autocorrelations should be close to zero and insignificant

- ► autocorrelation function of the standardized squared residuals $\hat{z}_t^2 = \frac{\hat{\varepsilon}_t^2}{\hat{\sigma}_{t|t-1}^2}$ from GARCH(1,1) model for daily S&P 500 returns
- GARCH $(1,1)$ specification of the model for volatility is adequate there is no remaining time dependence left in squared residuals \hat{z}_t^2

Sample: 5815 8471 Included observations: 2657

14.1.3.3 What Is the Optimal Forecast Corresponding to a GARCH(1,1) Process?

- \triangleright under symmetric quadratic loss function, with information set I_t the optimal variance forecasts $\sigma_{t+h|t}^2$ are
- \blacktriangleright the 1-step-ahead forecast

$$
\sigma_{t+1|t}^2 = \omega + \alpha_1 \varepsilon_t^2 + \beta_1 \sigma_{t|t-1}^2
$$

 \blacktriangleright the 2-step-ahead forecast is

$$
\sigma_{t+2|t}^2 = \omega + \alpha_1 E(\varepsilon_{t+1}^2|I_t) + \beta_1 \sigma_{t+1|t}^2 = \omega + (\alpha_1 + \beta_1) \sigma_{t+1|t}^2
$$

 \blacktriangleright the 3-step-ahead forecast is:

$$
\sigma_{t+3|t}^2 = \omega + \alpha_1 E(\varepsilon_{t+2}^2 | I_t) + \beta_1 \sigma_{t+2|t+1}^2 = \omega + (\alpha_1 + \beta_1) \sigma_{t+2|t}^2 = \omega (1 + \alpha_1 + \beta_1) + (\alpha_1 + \beta_1)
$$

 \triangleright in general, the *h*-step-ahead forecast of the conditional variance is

$$
\sigma_{t+h|t}^2 = \omega(1+(\alpha_1+\beta_1)+(\alpha_1+\beta_1)^2+\ldots+(\alpha_1+\beta_1)^{h-2})+(\alpha_1+\beta_1)^{h-1}\sigma_{t+1|t}^2
$$

14.1.3.3 What Is the Optimal Forecast Corresponding to a GARCH(1,1) Process?

ightharpoontriangleright in the forecast converges to the unconditional variance of \mathbf{r} the process, as $h \to \infty$ we have

$$
\sigma_{t+h|t}^2 = \omega(1 + (\alpha_1 + \beta_1) + (\alpha_1 + \beta_1)^2 + \ldots) \rightarrow \frac{\omega}{1 - (\alpha_1 + \beta_1)}
$$

If $\alpha_1 + \beta_1 = 1$, that is in the IGARCH(1,1) case, the forecast is a linear function of the forecast horizon

$$
\sigma_{t+h|t}^2 = \omega(1 + (\alpha_1 + \beta_1) + (\alpha_1 + \beta_1)^2 + \dots + (\alpha_1 + \beta_1)^{h-2}) + (\alpha_1 + \beta_1)^{h-1} \sigma_{t+1|t}^2
$$

= $\omega(h-1) + \sigma_{t+1|t}^2$

TARCH model

- \blacktriangleright reaction of volatility to positive vs negative shocks is likely not symmetric
- \blacktriangleright intuitively, negative shocks increase volatility more than positive shocks of the same size
- **In this is called the leverage effect**
- ▶ Threshold ARCH model, TARCH(1,1)

$$
\sigma_{t \mid t-1}^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \gamma_1 \varepsilon_{t-1}^2 I_{\{\varepsilon_{t-1}<0\}} + \beta_1 \sigma_{t-1 \mid t-2}^2
$$

where γ_1 represents the 'leverage' term is one way how to capture this asymmetric reaction of volatility to positive vs negative shocks

 \triangleright to see this note that the above model can be written as

$$
\begin{aligned} \sigma_{t|t-1}^2 &= \omega + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1|t-2}^2 & \text{if } \varepsilon_{t-1} \geq 0\\ \sigma_{t|t-1}^2 &= \omega + (\alpha_1 + \gamma_1) \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1|t-2}^2 & \text{if } \varepsilon_{t-1} < 0 \end{aligned}
$$

and so if *γ*¹ *>* 0 negative shocks lead to a larger increase in volatility than positive shocks

TARCH model

- in EViews, to estimate a TARCH $(1,1)$ model instead of a GARCH $(1,1)$, simply change "Threshold order" in "Variance and distribution specification" from 0 to 1
- \triangleright result below are for TARCH $(1,1)$ model for daily returns of Google stock
- $\alpha_1 = 0.0296$ and $\alpha_1 + \gamma_1 = 0.0296 + 0.0641 = 0.0937$ so the effect of a negative shock on volatility is about three times as large as the effect of a positive shock

Denendent Variable: R Method: ML ARCH - Normal distribution (OPG - BHHH / Marquardt steps) Date: 05/02/17 Time: 19:06 Sample (adjusted): 8/29/2004 4/30/2017 Included observations: 662 after adjustments Convergence achieved after 75 iterations Coefficient covariance computed using outer product of gradients Presample variance: backcast (parameter = 0.7) GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-1)^2*(RESID(-1)<0) + C(5)*GARCH(-1)

PARCH model

- \blacktriangleright reaction of volatility to positive vs negative shocks is likely not symmetric
- \blacktriangleright intuitively, negative shocks increase volatility more than positive shocks of the same size
- \blacktriangleright this is called the **leverage effect**
- ▶ Power ARCH model, PARCH(1,1)

$$
\sigma_{t|t-1}^{\delta} = \omega + \alpha_1 (|\varepsilon_{t-1}| - \gamma_1 \varepsilon_{t-1})^{\delta} + \beta_1 \sigma_{t-1|t-2}^{\delta}
$$

where γ represents the 'leverage' term and $\delta > 0$ is another way how to capture this asymmetric reaction of volatility to positive vs negative shocks

ightharpoonup to see this note that if $\delta = 2$ the above model can be written as

$$
\sigma_{t|t-1}^2 = \omega + \alpha_1 (1 - \gamma_1) \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1|t-2}^2 \quad \text{if } \varepsilon_{t-1} \ge 0
$$

$$
\sigma_{t|t-1}^2 = \omega + \alpha_1 (1 + \gamma_1) \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1|t-2}^2 \quad \text{if } \varepsilon_{t-1} < 0
$$

and so if $\gamma_1 > 0$ negative shocks lead to a larger increase in volatility than positive shocks

PARCH model

- in EViews, to estimate a $PARCH(1,1)$ model instead of a $GARCH(1,1)$, change "Threshold order" in "Variance and distribution specification" from 0 to 1, change "Model" from GARCH/TARCH to PARCH, and set "Fix power parameter" to 2
- \triangleright result below are for TPARCH $(1,1)$ model for daily returns of Google stock
- $\alpha_1 = 0.0570$, $\gamma_1 = 0.290$, thus $\alpha_1(1 \gamma_1) = 0.0404$ and $\alpha_1(1 + \gamma_1) = 0.0735$, the effect of a negative shock is almost twice as large as the effect of a positive shock

Dependent Variable: R Method: ML ARCH - Normal distribution (OPG - BHHH / Marguardt steps) Date: 05/02/17 Time: 19:06 Sample (adjusted): 8/29/2004 4/30/2017 Included observations: 662 after adjustments Convergence achieved after 75 iterations Coefficient covariance computed using outer product of gradients Presample variance: backcast (parameter = 0.7) GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-1)^2*(RESID(-1)<0) + C(5)*GARCH(-1)

GARCH-M model

- \blacktriangleright return of an asset can depend on volatility risk premium argument: investors need to be compensated by higher return if they face larger risk
- \blacktriangleright GARCH $(1,1)$ -in mean model, GARCH $(1,1)$ -M

$$
r_t = \mu + \xi \sigma_{t|t-1}^2 + \varepsilon_t
$$

\n
$$
\varepsilon_t = \sigma_{t|t-1} z_t
$$

\n
$$
\sigma_{t|t-1}^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1|t-2}^2
$$

- **P** parameter ξ captures the risk premium
- ► variants of the model can have the term $\sigma_{t|t-1}$ or $\log \sigma_{t|t-1}^2$ instead of $\sigma_{t|t-1}^2$ in the conditional mean equation