Eco 4306 Economic and Business Forecasting

Lecture 26
Chapter 14: Forecasting Volatility Il



Motivation

we saw that the conditional variance of several economic variables is time-varying

important for forecasting - when we construct interval forecasts, e.g.
Jt,n £1.960; ¢, the time-varying standard deviation of the process will make the
interval forecast either wider or narrower

moving average (MA) and exponentially weighted moving average (EWMA)
specification of time varying volatility are easy to calculate, but have limitations -
they are not designed to model time dependence in volatility

autocorrelation functions of the squared variable of interest are a good starting
point is to to analyze the time dependence in volatility

for example, as we saw last time, autocorrelograms of weekly squared returns to
the SP500 index, daily squared returns to the yen/U.S. dollar exchange rate, and to
the 10-year Treasury note all show significant positive autocorrelation coefficients

autocorrelation functions show a slow decay toward zero, indicating that the
squared returns may be modeled as autoregressive processes



14.1 The ARCH Family

> our main objective is to estimate and forecast the volatility of the stochastic
process
Tt = Hyjt—1 T €t

where f1;);_; is the conditional mean (that can follow for example an AR or an MA
or an ARMA specification)

> innovation & is a white noise process, which by definition is uncorrelated

> we define the conditional variance at time ¢, as the expectation of the squared
process in deviation from its mean given the information set up to ¢t — 1

U?\t—l = E[(re — peje—1)?1e—1]
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14.1 The ARCH Family

we let g, = Oylt—13t where z; is an independent innovation with zero mean and
unit variance

error term &; is thus conditionally heteroscedastic because its conditional variance
is Ut2|t—1 which is time varying:
2 2 2 2 2 2
var(e¢|li—1) = E(ei|I1—1) = E(at‘t_lzt [Ii—1) = Ut|t—1E(zt [It—1) = T e—1

although the conditional variance of ¢; is time varying, the unconditional variance
is constant

this is analogous to the conditional mean vs unconditional mean for
AR/MA/ARMA models case: conditional mean is a function of the information set
but the unconditional mean is a constant - for example, for AR(1) model

Bejt—1 = ¢0 + d1ys—1 but p = %
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14.1 The ARCH Family

in the autoregressive conditional heteroscedasticity (ARCH) model, the
conditional variance is assumed to follow an autoregressive process

Uf\t71 follows an ARCH process of order p, ARCH(p) if

2 2 2
Oie—1 =W targi_q +... +apei_,

in ARCH model, conditional variance is thus a function of of previous shocks &;_;
fori=1,2,...,p

conditional variance o is predetermined, known as of time ¢t — 1

2
t)t—1
because £;_; are squared, the sign of the shocks is irrelevant, only the magnitude
matters

to guarantee that the conditional variance is positive, we need to impose conditions
on the parameters: w > 0 and a; > 0 for all ¢
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14.1 The ARCH Family

consider the simplest possible case, the ARCH(1) process

T = Hejg—1 +Et where g¢ = 044 _12¢
U?\t—l =w+aie
innovation z; is independent and identically distributed with z; ~ N(0,1)

if e¢—1 is large (in absolute value), then Otjt—1 is large and so ¢ is also expected
to be large (in absolute value)

we next simulate and examine several ARCH processes to better understand their
properties

conditional mean 4,1 can in general follow an AR/MA/ARMA model, for
example in AR(1) case we have

Bejt—1 = ¢0 + d1ys—1
and so the conditional mean equation in the model above becomes
Tt = ¢0 + P1yt—1 + €t

but to simplify the exposition and focus just on the dynamics of the conditional
variance, consider the case where p;_1 is just a constant value fi;; 1 = 2

6
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14.1.1 ARCH(1)

> three ARCH(1) processes with w = 2 and with a; = 0.3, 0.6, and 0.9

> conditional mean p;;_; can in general follow an AR/MA/ARMA model, but to
simplify the exposition and focus just on the dynamics of the conditional variance,
consider the case where f1;);_; is just a constant value py;_; =2
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14.1.1 ARCH(1)

> left figure shows the simulated time series r¢, and the right figure shows the
corresponding conditional standard deviation oy; 1
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14.1.1 ARCH(1)

> left figure shows the simulated time series r¢, and the right figure shows the
corresponding conditional standard deviation oy; 1
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14.1.1 ARCH(1)

> left figure shows the simulated time series r¢, and the right figure shows the
corresponding conditional standard deviation oy; 1
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14.1.1 ARCH(1)

—w
1—aq

> thus when a1 becomes larger the time series of returns becomes more volatile

» unconditional variance of {r;} is 02 =

> unconditional distribution of ¢ is not normal, kurtosis is much higher than 3, and
the Jarque-Bera test rejects normality very strongly (p-values of the test are zero)

> kurtosis increases for high values of the parameter a1, other things being equal

Panel A
Descriptive Statistics of an ARCH(1) process (returns)
Sample: 1 1000

«=03 a=06 «=09

Mean 1975935 1.047474 1881775
Median 1930632 1.924136 1.906267
Maximum 1178508 24.60007 55.02234
Minimum 4482281 -17.69567 4936718
Sid. Dev. 1.766631 2611512 4810237
Skewness 0.208300 0065491 -0.863349
Kurtosis 4847531 10.48612 56.65335
Jarque-Bera 149.4553 11325.38 120069.3
Probability 0.000000 0.000000 0.000000
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14.1.1 ARCH(1)

» once the conditional mean and the conditional standard deviation are estimated,
we can construct the estimated standardized residuals Z; are obtained as
L Tt = Py
zZt = I —
Otlt—1

> if the dynamics of the conditional mean and variance are correctly specified, then
2t should a standard normal random variable

Panel B

120

Series: Standardzed process:
= ristdev

1004 sample 1 1000

Obsenvations 1000

80
Mean -0.010866
50 Median -0.038664
Maximum 3.980160
Minimum -3.319720
404 Std. Dev. 1.003468
Skewness 0.141614
204 Kurtosis 3.204294

Jarque-Bera  5.081409
L I B S I Probability 0.078811
-250 -125 0.0 126 250 375




14.1.1.2 What Do the Corresponding Autocorrelation Functions Look Like?

» consider now ARCH(1)

Tt = Mt|t—1 T Et where ¢; = Ot|t—1%t

2 _ 2
Tile—1 =W +aiep_q

with fug);_1, w =2, a1 =0.3

> autocorrelograms of returns 7 (left panel) and squared returnsrf (right panel):

time dependence in rf reveals time dependence in conditional variance

11 0.015 0.003
12 0.084 0.090

Sample: 1 1000 Sample: 1 1000
Included observations: 1000 Included observations: 1000
Autocorrelation  Partial Correlation AC  PAC Autocorrelation  Partial Gorrelation AC  PAC
1 -0.090 -0.020 | 1 0450 0450
2 -0.082 -0.071 [l 2 0477 -0.032
3 0071 0059 i 3 0.063 -0.007
4 0.050 0059 i 4 0.009 -0.015
5 -0.033 -0.015 1 5 -0.040 -0.044
6 0.020 0018 11 6 -0.037 0.001
7 0011 0.004 [l 7 -0.030 -0.009
g8 -0.054 -0.051 Ll 8 -0.040 -0.026
9 0.003 0001 i 9 -0.033 -0.005
10 -0.000 -0.009% 11 10 0.004 0.029
11
|
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14.1.1.2 What Do the Corresponding Autocorrelation Functions Look Like?

» consider now ARCH(1)

Tt = My|t—1 T Et where ¢; = Ot|t—1%t

2 _ 2
Tilp—1 =W + aie;_y

with Helg—1, w = 2, a1 = 0.3

> autocorrelograms of standardized residuals 2, = (r¢ — fig|s—1)/6¢)¢—1 (left panel)
and squared standardized residuals 22 = ((r; — ﬂt|t,1)/&t|t,1)2 (right panel): if
the dynamics of the conditional mean and variance are correctly specified, both Z;

and éf should show no time dependence

Sample: 1 1000 Sample: 1 1000
Included observations: 1000 Included observations: 1000
Autocorrelation Partial Correlation AC  PAC Autocorrelation  Partial Comelation AC  PAC
1 -0.072 -0.072 1 0.067 0.067
2 -0.034 -0.039 2 -0.012 -0.017
3 0079 0.074 3 0.018 0.020
4 0.050 0.081 4 0.007 0.004
5 -0.027 -0.014 5 -0.048 -0.049
& 0.024 0.018 & -0.008 -0.001
7 -0.005 -0.012 7 0.033 0.032
& -0.059 -0.060 & -0.033 -0.038
9 0013 0.003 9 -0.037 -0.031
10 -0.011 -0.015 10 0.012 0012
11 -0.002 0.008 11 -0.062 -0.0685
12 0.046 0.051 12 0.018 0.031
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14.1.1.3 What Is the Optimal Forecast Corresponding to an ARCH(1)
Process?

forecasting under a quadratic loss function

> the one-step-ahead variance forecast is o =w+ als?

2
t41)¢
2

> the two-step-ahead forecast is af+2|t =FE(w+ 04163_‘_1) =w+ 10y g,

> the three-step-ahead forecast is at2+3‘t =E(w+ oqs?_,_Q) =w+ a10t2+2|t

> this implies that in general for h step ahead forecast we have

2 — 2 . . .
Opipe =@t aioy,, ), or after substituting in
2 2 h—2 h—1 2
O't+h|t:w(1+061 +041+...+a1 )+a1 Ut+1|t
» thus as h — oo then O't2+h‘t — —lfal which is the unconditional variance of 7+

> convergence toward the unconditional variance is slow when « is large, and fast
when a1 is small

> this is analogous to the result that we saw when forecasting the conditional mean
using an AR model: as the forecast horizon increases, the memory of the model is
lost, and the forecast converges to the unconditional mean
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14.1.2 ARCH(p)

> properties of the ARCH(1) extend to ARCH(p) processes with small modifications

w

> unconditional variance is a? Sl prr—
—ap

» first p lags in PACF for demeaned squared returns are significantly different from
zero
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14.1.2 ARCH(p)

» consider daily returns for S&P 500

> autocorrelograms of squared daily returns shows more persistence in the squared

daily returns than in weekly or monthly data

> we could entertain an ARCH(8) or ARCH(9) for these data

Daily Returns r,

Autocorrelograms of the Squared Returns r‘2

Sample: 5815 8471
Included observations: 2657

Autocorrelation

Partial Gorrelation

AC PAC

T
9/1998

T T T T
9/2000 9/2002 9/2004 9/2006

— Daily retums to the SP500 Index

A

SOOI OO

SEE TS

[ N Sy R

10
11

13
14
15

0.152 0.152
0.196 0.477
0.196 0.153
0.136 0.067
0.194 0.124
0.144 0.062
0.168 0.083
0.160 0.066
0.117 0.019
0.147 0.049
0.136 0.043
0.130 0.033
0.103 -0.000
0.098 0.004
0.080 -0.014
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14.1.2 ARCH(p)

steps involved in building an autoregressive conditional heteroscedasticity (ARCH)
model:

1. specify the conditional mean equation - use ACF, PACF, Q-statistics to identify
serial dependence in the data

2. estimate the model for the conditional mean

3. use residuals of the mean equation from step 2 to specify a volatility model - use
ACF, PACF, Q-statistics for squared residuals

4. perform a joint estimation of the mean and volatility equations

5. check the fitted model for adequacy - both standardized residuals and squared
standardized residuals should be white noise

after the joint estimation in step 4 it is possible that the conditional mean equation from
steps 1 and 2 has to be modified - some terms can for example become insignificant



14.1.2 ARCH(p)

> to estimate an ARCH(9) model for daily returns of S&P 500 index in EViews enter
the following information in the specification window
> estimation settings: choose "ARCH - Autoregressive Conditional Heteroscedasticity”"
instead of “LS - Least Squares”
> in the mean equation: r ¢ AR(1)
> in the variance equation select ARCH 9 and GARCH 0
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14.1.2 ARCH(p)

SP300 daily returns—ARCH(9)

Dependent Variable: R

[Method: ML - ARCH](BHHH) - Normal distribution
Sample: 5815 8471

Included observations: 2657

Convergence achieved after 16 iterations
[Bollerslev-Wooldrige robust standard erors & covariance]

Variance backcast: ON

GARCH = C(2) + C(3y*RESID(-1¥"2 + C(4y*RESID(-2)*2 + C(S*RESID
(-3)°2 + C(6)*RESID(-4)*2 + C(7)*RESID(-5)"2 + C(8)*RESID(-6)"2
+COFRESID(-TY*2 + C(10/*RESID(-8)"2 + C(11*RESID(-9)"2

Coefficient  Std. Emor  z-Statistic  Prob.

C 0037003 0018214 2031594  0.0422
Variance Equation

C 0271763 0.040891  6.645982  0.0000
RESID(-1)"2 0.020949  0.028081 1.066510  0.2862
RESID(-2)"2 0.140370  0.044623  3.347391 0.0008
RESID(-3)"2 0.005260 0026377  3.611510  0.0003
RESID(-4)"2 0.101684 0027620  3.681607  0.0002
RESID(-5)"2 0082439 0023397 3523482  0.0004
RESID(-6)"2 0060298 0021251  2.837387  0.0045
RESID(-7)"2 0.090927 0030511  2.980119  0.0029
RESID(-8)"2 0.142659 0020601 4819476  0.0000
RESID(-9)"2 0.082659 0023815 3470870  0.0005
R-squared -0.000565 Mean dependent var 0.009761
Adjusted R-squared -0.004346  S.D. dependent var 1.146761
S.E. of regression 1.149251  Akaike info criterion 2.910013
Sum squared resid 3494.776  Schwarz criterion 2034377
[Cog Tikelihood] Durbin-Watson stat 2.079077
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14.1.2 ARCH(p)

> the estimated ARCH(1) model is

re = 0.037 + &¢
0f_q = 0-271 4 0.030e7_; + 0.1497_5 + 0.095¢7_3 + ... +0.083¢7_g

> note that the sum of the coefficients «; is very high, a1 + a2 + ...+ ag ~ 0.835
> this sum is also known as the persistence in variance

> when the persistence is high, the conditional variance will tend to be high (or low)
for many consecutive days
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14.1.2 ARCH(p)

advantages of ARCH models
> simple, but able to generate volatility clustering
weaknesses of ARCH models

> large number of lags often required to adequately describe the volatility process
> positive and negative shocks have same effects on volatility (no asymmetry)

» conditional standard deviation process tends to have low persistence and
high-frequency oscillations with high volatility coming in short bursts

N
N



14.1.3 GARCH(1,1)

in generalized autoregressive conditional heteroscedasticity (GARCH)
innovations follows a process similar to an ARMA model

GARCH(1,1) model with normally distributed innovations has the following
specification

> the dynamics of the conditional mean is given by

Te = fyje—1 T Et where € = o412 and 2z ~ N(0, 1)
> the dynamics of the conditional variance is given by
2 2 2
Oi—1 =w+a1e;_y + P10y 142
parameters satisfy w > 0, a1 > 0, and 81 > 0

the difference compared to ARCH(1) specification is that in GARCH(1,1) model
the conditional variance at time ¢t depends not only on the past innovation ;1
but also on the most recent level of volatility Jt2—1|t—2
for instance, if 1 = 0.80, we say that 80% of yesterday's variance carries over to
today's variance
unconditional first and second moments are E(e¢) = 0, var(e) = ﬁ
conditional first and second moments are E¢_1(e¢) =0,
vari—1(et) =w + a15?71 + 510371
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14.1.3 GARCH(m, s)

> a general GARCH(m, s) model assumes that a?‘Fl is given by

m S

s 2 2

Oile—1 =Wt E aig;_;+ E Bioy_iji—i—1
i=1 i=1

> lower order GARCH models, GARCH(1,1), GARCH(2,1), GARCH(1,2), are used in
most applications

> main advantage of GARCH models is that they can generate similar volatility
dynamics as high order ARCH models with fewer parameters

» for example, with a GARCH (1,1) model we have three parameters w, a1, 31 to
estimate, while with an ARCH(9) we have 10 parameters w, a1, . .., a9 to estimate
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14.1.3 GARCH(1,1)

> a GARCH(1,1) process is equivalent to an ARCH process of infinite order,
ARCH(00), with exponentially decreasing weights a1, a1ﬂ1,a15f, alﬂ?, ...on
squared past innovations af_l, 6?_2, 6?_3, 5?_4, S

> to understand this equivalence, note that we could use backward substitution in
the GARCH(1,1) conditional variance equation to obtain

2 _ 2 2
Ofi—1 =W T aigi_ 1 + 810,40

wHore? |+ B (w +one?_, + 51‘7?_2\t_3)

w(l+B1) +arer | + Proner_o + 5%%2,2“,3

o0
wl+B1+Bf+..)+o Zﬂfle?_i
=1

o0
w 2 : i—1_2
1_ 61 +aq -~ 61 t—1i
i=

> persistence of the GARCH(1,1) process - how permanent are the shocks - is given
oo i—1
by a3 Zi:l 61 = 1(_¥}31

40



14.1.3.1 What Does a Time Series of GARCH(1,1) Process Look Like?

> to assess the contribution of the a3 and (31 parameters we'll compare two
GARCH(1,1) processes

> as in the case of ARCH(1) process before, we set the conditional mean to a
constant value, py);_1 = 2, to focus just on the dynamics of the conditional
variance

> in addition, as before we set w = 2, and we again assume that innovation z; is
normally distributed z; ~ N(0, 1) image

> consider two simulated time series with 2,500 observations for the return process r¢

and for the conditional variance cftQ‘F1
1. low persistence process: a1 = 0.4, 81 = 0.4, with persistence 1f}31 = 0.667
2. high persistence process: 1 = 0.1, 81 = 0.88, with persistence 15231 =0.83



14.1.3.1 What Does a Time Series of GARCH(1,1) Process Look Like?

Time series of retums Time series of retums
a=045=04 a=0.15=088
40 40
30+
20+
—20
-30 B T
500 1000 1500 2000 2500 500 1000 1500 2000 2500
Conditional standard deviation Conditional standard deviation
a=04p=04 a=0.18=0.88
20 20
16 16—
124
a8
I
4
0

500 1000 1500 2000 2500
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14.1.3.1 What Does a Time Series of GARCH(1,1) Process Look Like?

the unconditional variance is larger in the high persistence process than in the low
persistence process

this is because the unconditional variance of a GARCH(1,1) process is

2 __ w H H 2 _ H H
0 = Toahy and so in the low persistence process o2 = 10, and in the high

persistence process a? =100

in addition, in the high persistence process, 88% of the past volatility is transferred
to the current volatility, while in the low persistence process, it is only 40%

thus, in a high persistence process, high (low) volatility is followed by high (low)
volatility over longer periods of time than in a low persistence process



14.1.3.2 What Do the Corresponding Autocorrelation Functions Look Like?

» correlograms of the squared time series rtz for the low and high persistence cases

have profiles that correspond to those from autoregressive processes

> degree of persistence in variance is evident in the speed of the decay toward zero -
decay is faster in the low persistence process than in the high persistence process

> the correlogram for daily returns to the S&P500 index shows pattern similar to

those of the simulated high persistent process

Time series r]

(1) a = 0.4, B = 0.4 (low persistence)

2+8,

L= 2+ast, + ol

Time series r”
(2) @ = 0.1, B = 0.88 (high persistence)

Sample: 1 20000 Sampile: 120000
Included observations: 20000 Included cbservations: 20000
Autocomelation Partial Correlation AC  PAC Autocorrelation Partial Correlation AC PAC
[ 1 0470 0470 | 1 0263 0263
i 2 0383 0208 | 2 0301 0240
[ 3 0376 0.82 [ 3 0240 0.43
[ 4 02490 -0.022 [ 4 0254 0.20
[ 5 0167 -0.046 [ 5 0200 0085
[ 6 0.130 -0.008 [ 6 0255 0.110
[ 7 0113 0010 [ 7 0277 0130
[ 8 0080 0018 | 8 0248 0070
[ 0 0086 0024 [ 9 0260 0085
[ 10 0.048 -0.020 [ 10 0215 0.025
[ 11 0.034 -0.014 [ 11 0190 0.000
[ 120,026 -0.006 [ 12 0212 0.041
[ 13 0015 0.002 | 13 0233 0.084
| 14 0019 0.017 [ 14 0245 0073
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14.1.3 GARCH(1,1)

> to estimate a GARCH(1,1) enter the following information in the specification
window:

> estimation settings: choose "ARCH - Autoregressive Conditional Heteroscedasticity”"
instead of “LS - Least Squares”

mean equation: r c
variance and distribution specification: ARCH 1, GARCH 1

>
>



14.1.3 GARCH(1,1)

Dependent Variable: R

Sample: 5815 8471
Included observations: 2657

Variance backcast: ON

Method: ML - ARCH (BHHH) - Normal distribution

Convergence achieved after 10 iterations
Bollerslev-Wooldrige robust standard errors & covariance

GARCH =C(2) + C(3*RESID(-1)"2 + C(4)*GARCHI-1)

Coefficient  Std. Error  z-Statistic Prob.

0.036267|  0.017439 2.079665 0.0376
Variance Equation

] 0.010421 0.005245 1.987099 0.0469
0.065649]  0.011338 5.790038 0.0000
GARCH(-1) 0.927400]  0.011045 83.96233 0.0000
R-squared -0.000534 Mean dependent var 0.000761
Adjusted R-squared -0.001666  S.D. dependent var 1.146761
S.E. of regression 1.147716  Akaike info criterion 2 888638
Sum squared resid 3404.671  Schwarz criterion 2.807498
Log likelihood -3833.556  Durbin-Watson stat 2079139
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14.1.3 GARCH(1,1)

the estimated model is

i = 0.036 + &t
o}y = 0.010 +0.066e7_; +0.92707 |, ,

__0.066  _
122?1 = 1-0.927 — 09
note that both information criteria for GARCH(1,1) model are lower than those for
the ARCH(9) model

to check whether the equation for the conditional mean is adequately specified we

need to examine the autocorrelations of the standardized residuals 2; = = 3
t|t—1

the estimated persistence is thus

to check whether the equation for the conditional variance is adequately specified
we need 1;0 examine the autocorrelations of the standardized squared residuals
8} = i

t|t—1

in both cases the autocorrelations should be close to zero and insignificant



14.1.3 GARCH(1,1)

-2
. . . - A £
> autocorrelation function of the standardized squared residuals ztz = # from
tlt—1

GARCH(1,1) model for daily S&P 500 returns

» GARCH(1,1) specification of the model for volatility is adequate - there is no

remaining time dependence left in squared residuals 2?

Sample: 5815 8471
Included observations: 2657

Autocorrelation  Partial Correlation AC PAC Q-Stat Prob

-0.031 -0.031 2.5244 0.112
0.033 0.032 54669 0.065
0.007 0.009 5.6164 0.132
0.005 0.005 5.6914 0.223
0.006 0.005 57756 0.329
-0.016 -0.016 6.4731 0.372
0.000 -0.001 6.4731 0.486
0023 0024 7.8948 0444
0.001 0.002 7.8965 0.545
0.024 0023 9.4796 0.487
0.009 0.010 9.7071 0.557
-0.010 -0.012 9.9971 0.616
0.002 0.000 10.011 0.693
-0.004 -0.003 10.063 0.758

gy
“— oo~ EeWN =

gy
wr

-
=
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14.1.3.3 What Is the Optimal Forecast Corresponding to a GARCH(1,1)
Process?

» under symmetric quadratic loss function, with information set I; the optimal

: 2
variance forecasts o—t+h\t are

> the 1-step-ahead forecast
”t2+1\t =wtone + 510t2|t—1
> the 2-step-ahead forecast is
o? =w+ a1 E(E2, | |It) + fro? =w+ (a1 + B1)o?
t+2|t 1 t+1l4t 104411t 1 )01t
> the 3-step-ahead forecast is:
Uf+3|t = W+C¥1E(5§+2|It)+610',52+2|t+1 = w+(a1+51)0,52+2|t = w(l4a14p1)+(c1+p61)

> in general, the h-step-ahead forecast of the conditional variance is

oF e = W+ (@ +B1)+ (@1 +81)  +. 4 (@ +81)" )+ (a1 +81)"of ),
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14.1.3.3 What Is the Optimal Forecast Corresponding to a GARCH(1,1)
Process?

> note that if &1 + 81 < 1 the forecast converges to the unconditional variance of
the process, as h — oo we have

w

ipne = @1 F @1+ )+ (4 p1)" + ) = Ty

> if a1 + 81 = 1, that is in the IGARCH(1,1) case, the forecast is a linear function of
the forecast horizon

ofip = w4 (@1 + 1) + (a1 +B1)° + ..+ (a1 + 1) 72) + (ar + )" Tof ),
=wh—-1)+ afmt
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TARCH model

» reaction of volatility to positive vs negative shocks is likely not symmetric

> intuitively, negative shocks increase volatility more than positive shocks of the
same size

> this is called the leverage effect
» Threshold ARCH model, TARCH(1,1)

2 _ 2 2 2
i1 =Wt gy Fieioi e, <oy P11

where 71 represents the ‘leverage’ term is one way how to capture this asymmetric
reaction of volatility to positive vs negative shocks

> to see this note that the above model can be written as
O't2|t_1 :w+a1€f,1+,810t2_m_2 ife;—1 >0

ofq =w+ (1 +m)ef_y + Blaf_llt_Q ifer1 <0

and so if 1 > 0 negative shocks lead to a larger increase in volatility than positive
shocks
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TARCH model

in EViews, to estimate a TARCH(1,1) model instead of a GARCH(1,1), simply
change “Threshold order” in “Variance and distribution specification” from 0 to 1

result below are for TARCH(1,1) model for daily returns of Google stock

a1 = 0.0296 and a3 + 1 = 0.0296 + 0.0641 = 0.0937 so the effect of a negative
shock on volatility is about three times as large as the effect of a positive shock

>

Dependent Variable: R

Method: ML ARCH - Normal distribution (OPG - BHHH / Marguardt steps)

Date: 05/02(17 Time: 19:06

Sample (adjusted): 8/29/2004 4/30/2017

Included observations: 662 after adjustments

Convergence achieved after 75 iterations

Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter =0.7)

GARCH = C(2) + C(3)*RESID(-1)*2 + C({4)*RESID(-1)"2*(RESID(-1)=0) +

C(5)*GARCH(-1}
Variable Coeflicient Std. Error z-Statistic Prob
c 0.430126 0.162007 2638702 0.0083
Variance Equation

c 0789046 0.291020 2711309 0.0067
RESID{-1)*2 0029587 0.012420 2382237 0.0172
RESID(-1y'2*(RESID{-1)=<0)  0.064134 0.024918 2573803 0.0101
GARCH(-1) 0891791 0.029447 30.28423 0.0000
R-squared -0.000005 Mean dependentvar 0.420322
Adjusted R-squared -0.000005 S.D.dependentvar 4.315342
S.E. of regression 4315353 Akaike info criterion 5.660740
Sum squared resid 12309.32 Schwarz criterion 5.694692
Log likelihood -1868.705 Hannan-Quinn criter. 5.673899

Durbin-Watson stat 2.093189




PARCH model

reaction of volatility to positive vs negative shocks is likely not symmetric

intuitively, negative shocks increase volatility more than positive shocks of the
same size

this is called the leverage effect
Power ARCH model, PARCH(1,1)
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where v represents the ‘leverage’ term and § > 0 is another way how to capture
this asymmetric reaction of volatility to positive vs negative shocks

to see this note that if 6 = 2 the above model can be written as

O't2|t—1 =w+a1(1*71)5%,1+ﬁ1at2_m_2 ifeg1 >0

Ut2|t—1 w+a1(1+71)€f,1+ﬁ10t2_1‘t_2 ifer—1 <0

and so if y1 > 0 negative shocks lead to a larger increase in volatility than positive
shocks



PARCH model

> in EViews, to estimate a PARCH(1,1) model instead of a GARCH(1,1), change
“Threshold order” in “Variance and distribution specification” from 0 to 1, change
“Model” from GARCH/TARCH to PARCH, and set “Fix power parameter” to 2

> result below are for TPARCH(1,1) model for daily returns of Google stock

> a1 = 0.0570, v1 = 0.290, thus a1(1 — 1) = 0.0404 and a1 (1 + ~v1) = 0.0735, the
effect of a negative shock is almost twice as large as the effect of a positive shock

Dependent Variable: R

Method: ML ARCH - Normal distribution (OPG - BHHH / Marquardt steps)

Date: 05/02/17 Time: 19:06

Sample (adjusted): 8/29/2004 4/30/2017

Included observations: 662 after adjustments

Convergence achieved after 75 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter =0.7)

GARCH = C(2) + C{3y'RESID(-1)'2 + C(4)*RESID(-1*2*(RESID(-1)<0) +
CI5/"GARCH(-1)

Variable Coeficient Std. Error  z-Statistic Prob.

c 0430126 0.163007 2638702 0.0083

Variance Equation

c 0789046 0.291020 2711309 0.0067
RESID(-1)'2 0.029587 0.012420 2382237 0.0172
RESID(-1)*2%(RESID(-1}=0)  0.064134 0.024918 2573803 0.0101
GARCHI(-1) 0891791 0.029447 3028423 0.0000
R-squared -0.000005 Mean dependentvar 0.420322
Adjusted R-squared -0.000005 S.D.dependentvar 4.315342
S.E. of regression 4315353 Akaike info criterion 5.660740
Sum squared resid 12309.32  Schwarz criterion 5.694692
Log likelihood -1868.705 Hannan-Quinn criter. 5.673899

Durbin-Watson stat 2.093189
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GARCH-M model

> return of an asset can depend on volatility - risk premium argument: investors need
to be compensated by higher return if they face larger risk

» GARCH(1,1)-in mean model, GARCH(1,1)-M
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> parameter £ captures the risk premium

> variants of the model can have the term o;;_; or log Ut2|f—1 instead of Ur2|f—1 in

the conditional mean equation



