Eco 4306 Economic and Business Forecasting

Lecture 18
Chapter 10: Forecasting the Long Term: Deterministic and Stochastic Trends



Motivation

> we analyzed the behavior and constructed forecasts for time series that contain a
deterministic trend

» we will now look at the stochastic trend, and develop tools to be able to
distinguish between the two cases
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10.2 Stochastic Trends

» a stochastic trend is the result of the accumulation over time of random shocks or

innovations
t—1

Xt =Z€t7j =ctte1+--+ea
j=0
where ¢ ; is a white noise
> a process that contains a stochastic trend is called a unit root process

> note that for any j the effect of a shock £;_; on X3 is permanent, it does not
diminish over time even as t — oo



10.2 Stochastic Trends

> an AR(1) process Y; = ¢+ ¢1Yi—1 + ¢ with ¢1 = 1 has a stochastic trend, this
process is called a random walk, and we distinguish between

1. pure random walk without drift Y; = Y;_1 + ¢, so the case with ¢ = 0
2. random walk with drift Y; = ¢+ Y:—1 + ¢+, where ¢ # 0 is a drift

> for a pure random walk we have by repeated backward substitutions

Yi=Yi1+et
=Y o+ei—1+e

=Yo+er+...+et—1+¢€¢

t—1
=Y+ ZEtﬂ'
j=0



10.2 Stochastic Trends

> in case of a random walk with drift, if we substitute backward we obtain

Ye=c+Yi1+e
=c+ (c+Yiatet—1) + et

=Yo+ct+er+...+e—1+¢e
t—1
:Yo+ct+Zat,j
j=0

> presence of drift term in random walk thus results a deterministic time trend ct



10.2 Sto

chastic Trends

> both pure random walk and the random walk with drift are highly persistent
(because effects of shocks are permanent)

(@) (4]}
10 300
0
I fl 250 -|
Pl
-20 4 \ -
u'm /1,.-"'\4" ‘1\ 150 4 /_,f
=30 4
| 100 |
404 ! v {
| M
504 Wﬂ\\ W I w 50
804 \ 0
100 200 300 400 500 100 200 300 400 500
—— Random walk without drift —— Random walk with driftc =05 ----- Trend = 0.5




10.2 Stochastic Trends

> random walk without drift will either grow, decline or just meander around

> random walk with drift will exhibit a clear upward tendency when ¢ > 0 and a
downward tendency when ¢ < 0

five simulations of random walk without drift vs random walk with drift
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10.2.2 Stationarity Properties
for pure random walk without drift Yz = Y:—1 4+ et = Yo + Zj;; €¢—j the first and
second moments are

» unconditional mean
t—1
pe = E(Y:) = E<Y0 + ZEH) =Yo
j=0

» unconditional variance
t—1

~¢,t = var(Y:) = var (Y() + Z z—:t,j> = tog

Jj=0
> autocovariance of order k

Ve, t—k = COU(YLYt—Ic) = E[(Yt - /ﬁt)(Yt—k - Nt—k)]

t—1 t—k—1
= E{(Z?‘:t—j) ( Z €t—j>j| = (t —k)o?
j=0 j=0
> autocorrelation of order k
Vi, t—k (t — k)o? t—k

Ptt—k = = =
VIt Ti—kit—k  \/to2\/(t — k)o2 t
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10.2.2 Stationarity Properties

» unconditional mean is a constant

» unconditional variance and the unconditional autocovariances depend on time -
they are increasing functions of time

> pure random walk without drift is thus first but not second order weakly stationary

> since variance is an increasing function of time, potential outcomes of random
variable Yz become more dispersed, increasing the probability of getting very large
or very small observations

> autocorrelation are asymptotically 1 regardless of the distance k, sample
autocorrelations will be very close to 1, with very slow decay



10.2.2 Stationarity Properties
for the random walk with drift Yy = c+ Yi—1 + et = Yo + ct + Z;;é €¢—j the first
and second moments are

» unconditional mean
t—1
e = E(Y;) = E(Yo tet+ Zst,]) = Yo +ct
j=0

» unconditional variance
t—1

~¢,¢ = var(Y:) = var (YO +ct + Zst,j) = ta?
§=0

> autocovariance of order k

Yt t—k = COU(YLYt—Ic) = E[(Yt - /ﬁt)(Yt—k - Nt—k)]

t—1 t—k—1
= E{(Z?‘:t—j) ( Z €t—j>j| = (t —k)o?
j=0 j=0
> autocorrelation of order k
Vi, t—k (t — k)o? t—k

Ptt—k = = =
VIt Ti—kit—k  \/to2\/(t — k)o2 t
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10.2.2 Stationarity Properties

> mean, variance, and autocovariances are all increasing functions of time

» the difference compared to a random walk without drift is that the mean now
contains a deterministic linear trend

» random walk with drift is thus neither first nor second order weakly stationary
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10.2.2 Stationarity Properties

Sample: 2 500
Included observations: 409
Partial C i AC PAC Q-Stat Prob
[| — 1 1 0.990 0.990 492.08 0.000
[| — i 2 0.980 -0.014 975.14 0.000
(a) Random Wak = 8 & 0960-0:0% 10154 0,000
[ — i L -0. 1015. X
Without Drift = W 5 0951 0.024 2372.0 0.000
(Figure 10.8qa) = 13 6 0.042 0.027 2822.8 0.000
| — 13 7 0.34 0.023 3265.7 0.000
|— i) 8 0025 0.004 3701.7 0.000
| — i 9 0017 0.001 4131.1 0.000
| — i 10 0.909 -0.036 4553.2 0.000
| — 1 11 0.001 0.042 4068.0 0.000
| — i 12 0.803 0.000 53785 0.000
Sample: 2 500
Included observations: 409
Partial C : AC PAC Q-Stat Prob
| — 1 1 0.093 0.993 495.20 0.000
| — i 2 0.086 0.000 984.67 0.000
| — i 3 0.080-0.006 1468.4 0.000
= |
(| — i 14 241 x
(b) Random Walk with = il 6 0.950-0.014 2884.9 0,000
Drift (Figure 10.8b) | — I|1 7 0.952-0.011 3345.1 0.000
| — i 8 0.044-0.019 3709.2 0.000
= i 9 0.037 0.015 4247.4 0.000
| — i 10 0.930 0.000 4689.7 0.000
| — i 11 0.923 0.006 5126.4 0.000
[| — i 12 0.916-0.004 5557.3 0.000
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10.2.2 Stationarity Properties

note that

> the first difference of a pure random walk process is
AY: =Y —Yi—1=Yic1+et) —Yic1 =&
> the first difference of a random walk process with a drift is
AY; =Y —Yi1=(c+Yio1+e) — Y1 =c+es

> so in both case by differencing we have obtained a second order weakly stationary
process
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10.2.2 Stationarity Properties

» random walks without and with drift are thus examples of a difference stationary
process - a nonstationary process for which differencing yield a stationary process

> a difference stationary process is said to be integrated of order d, denoted as I(d)
if it need of to be differenced d times to obtain a stationary process

» random walk is thus I(1) since AY} is stationary
> a stationary process is I(0) since Y; itself is stationary and no differencing is needed

> for economic and business data, we rarely have difference stationary series that
need to be differenced more than twice, most need to be differenced only once or
not at all



10.2.2 Stationarity Properties

to summarize

> process with deterministic trend

>
>

>
>

mean is growing over time, but variance and autocovariances do not depend on time
this process is not second order weakly stationary, but can be made second order weakly
stationary by detrending

often referred to as trend stationary process

effects of shocks are temporary

> process with stochastic trend

>
>

>

mean either constant or growing over time, variance and autocovariances depend on time
this process is not second order weakly stationary, and can not be made second order
weakly stationary by detrending

often referred to as difference stationary process

effects of shocks are permanent



10.2.2 Stationarity Properties

five simulations of trend stationary time series vs random walk with drift

Yy =ct+u, where u=@ U, + & Yi=C+ Y1t
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10.2.2 Stationarity Properties

It is important to be able to distinguish between the two cases:

> with trend stationary series shocks have transitory effects
» with difference stationary series shocks have permanent effects
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In addition, as we will see later additional issues
the context of multivariate time series analysis

arise with difference stationary series in
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10.2.2 Stationarity Properties

U.S. Real GDP and the effect of 2008-2009 recession
two alternative explanations

» difference stationary process implying permanent effect of a negative shock
> trend stationary process with a structural break (change in intercept and/or trend)

Real Gross Domestic Product Log of Real Gross Domestic Product
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10.2.2.1 Testing for Unit Root

> next goal: develop tools to be able to determine whether a time series has a unit
root (contains stochastic trend) or is trend stationary (contains deterministic trend)

> consider first an AR(1) model Yz = ¢1Y;_1 + & which has a unit root if ¢1 =1

> to test whether a unit root is present is same as to test hypothesis Hyp : ¢1 =1
against on sided alternative Hy : ¢1 < 1

> in practice, the model is rewritten as AY; = 8Y;—1 + &+ where 8 = ¢1 — 1 and the
unit root is present if 3 =0

> in the rewritten model to test whether a unit root present is same as to test
Hp : B =0 against on sided alternative H; : 8 <0

> this test can however not be performed using usual t-test - distribution of the test
statistic in this case is not Student

> we need to use the so called Dickey-Fuller test instead
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10.2.2.1 Testing for Unit Root

> there are three variants of the Dickey-Fuller test for the presence of a unit root

v

Case | (no constant or trend)

Ho:Yi =Y 1 +ee
Hy Yy =¢1Yeo1 + e

v

Case Il (constant only)

Ho:Yi1 =Y 1+¢e
Hy:Yi=c+¢1Ye1 + et

v

Case Ill (constant and trend)

Hy:Yi=c+Yi1+es
Hi:Yi=cH+at+¢p1Yio1 +e¢

(Yz is I(1) without drift)
(Yz is 1(0) with zero mean)

(Yz is I(1) without drift)

(Y3 is I(0) with nonzero mean)

(Y is I(1) with drift)
(Yt is I(0) with deterministic trend)



10.2.2.1 Testing for Unit Root

> we choose the version of the test that is compatible with the data under the null
and under the alternative hypotheses

> trend properties of the data under the alternative hypothesis will determine the
form of the test regression used

> in particular

> case | would be rarely used, it is appropriate only for time series for which there is some

strong reason to believe that the unconditional mean is zero

case |l is appropriate for non-trending economic and financial series like exchange rates,
interest rates and spreads, unemployment rate, inflation rate, ...

case Il is appropriate for trending time series like asset prices or the levels of
macroeconomic aggregates like real GDP, industrial production, employment

>



10.2.2.1 Testing for Unit Root

> for ease of exposition, we have only considered a unit root in AR(1) process
Yi=¢1Yi1 + e
> but in general any ARMA process may contain a unit root

> in this case we need to modify the Dickey-Fuller test to allow for a more
complicated dynamics

» this is done Augmented Dickey Fuller test, which tests whether 5 = 0 in a model

P
AY; = BYi—1 +6; Z Ayr—i +et
i=1
where again a constant ¢ and a trend ot may be added if necessary, just like it is
done in the Dickey-Fuller test

> the number of lags included in the regression, p, is usually determined by
information criteria (AIC or SIC)
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10.2.2.1 Testing for Unit Root

> if we fail to reject the unit root in Y;, we check for additional unit roots running
the Dickey-Fuller test on the successive differences of the series, AY;, A2Y;, ...
until we reject the unit root in favor of a stationary model

> the general representation of a process with linear dependence: ARIMA(p, d, q)
$(L)A?Y; = 6(L)er

where (L) =1 —¢1L—... —¢pLP and O(L) =1+ 61 L+ ...+ 4L
> when d = 0, there isn't a unit root, Y; is stationary, and we model the time
dependence by building an ARMA(p, g) model for Y;

» when d = 1, there is a unit root, AY} is stationary, and we model time dependence
by building an ARMA(p, ¢) model for AY;
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Example: Federal Funds Rate, Unemployment Rate, CPI Inflation Rate

> figure below shows the time series plots for Effective Federal Funds Rate FEDFUNDS,
Unemployment Rate UNRATE, CPI inflation (measured as % change from year ago
in CPI) CPI_PCH12, and their first differences, during the period from 1960M1 to
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https://fred.stlouisfed.org/series/FEDFUNDS
https://fred.stlouisfed.org/series/UNRATE
https://fred.stlouisfed.org/series/CPIAUCSL

Example: Federal Funds Rate

> to perform Augmented Dickey Fuller test for the presence of unit root in Federal
Funds Rate FEDFUNDS open the series and choose View — Unit Root Tests

> since FEDFUNDS does not exhibit a clear upward or downward tendency in the
option “Include in test equation” we select “Intercept” to perform the Case Il

variant of the ADF test

> the p-value is 0.1573 so we can not reject the null of a unit root

> in the second step, testing the first difference of FEDFUNDS then yields p-value
0.0000, and so we reject the null hypothesis of a unit root in the first difference of

FEDFUNDS

> we thus conclude that FEDFUNDS is integrated of order 1, so (1)

Null Hypathesis: FEDFUNDS has a unit raot
Exogenous: Constant
Lag Length: 13 (Automatic - based on SIC, maxiag=19)

Null Hypothesis: D(FEDFUNDS) has a unit roat
Exogenous: Constant
Lag Length: 12 (Automatic - based on SIC, maxlag=19)

t-Statistic Prob*

t-Statistic Prob*

Dickey-Fuller test stafistic -2.348116 0.1573 Dickey-Fuller test statistic -6.504050 0.0000
Test critical values: 1% level -3.438682 Test criical values: 1% level -3.439682
5% level -2.865549 5% level -2.865548
10% level -2.568961 10% level -2.568961

*MacKinnon (19961 one-sided o-values.

*MacKinnon (1996) one-sided p-values.
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Example: Unemployment Rate

> to perform Augmented Dickey Fuller test for the presence of unit root in Federal
Funds Rate UNRATE open the series and choose View — Unit Root Tests

> since UNRATE does not exhibit a clear upward or downward tendency in the option
“Include in test equation” we select “Intercept” to perform the Case Il variant of

the ADF test

> the p-value is 0.0304 so we can reject the null of a unit root at 10% and 5% levels

> we thus conclude that UNRATE is integrated of order 0, so 1(0)

Null Hypotnesis: UNRATE has & unit root
Exogenous: Constant

Lag Length: 4 (Automatic - based on SIC, maxlag=19)

Null Hypothesis: D(UNRATE) has a unit root
Exogenous: Constant
Lag Length: 3 (Automatic - based on SIC, maxag=19)

t-Statistic Prob* -Statistic Prob*

Dickey-Fuller test stafistic -3.057041 0.0304 Dickey-Fuller test statistic -7.801607 0.0000
Test critical values. 1% level -3.439682 Test critical values: 1% level -3.439882
5% level -2.865549 5% level -2.865548
10% level -2.568961 10% level -2568961

*MacKinnon (1996) one-sided pvalues

*MacKinnon (1996) one-sided pvalues
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Example: CPI Inflation

> to perform Augmented Dickey Fuller test for the presence of unit root in Federal
Funds Rate CPI_PCH12 open the series and choose View — Unit Root Tests

> since CPI_PCH12 does not exhibit a clear upward or downward tendency in the
option “Include in test equation” we select “Intercept” to perform the Case Il
variant of the ADF test

> the p-value is 0.0643 so we can not reject the null of a unit root at 1% and 5%
levels

> in the second step, testing the first difference of CPI_PCH12 then yields p-value
0.0000, and so we reject the null hypothesis of a unit root in the first difference of
CPI_PCH12

» we thus conclude that CPI_PCH12 is integrated of order 1, so I(1)

Null Hypethesis: CPI_PCH12 has a unit root Null Hypothesis: D(CPI_PCH12) has a unit root
Exogenous: Constant Exogenous: Constant
Lag Length: 15 (Automatic - based on SIC, maxlag=19) Lag Length: 12 (Automatic - based on SIC, maxlag=19)
tStatistc  Prob* tStatisic  Prob*
Dickev-Fuller test statistic 2762425 00643 Dickey-Fuller test statistic -8.389774  0.0000
Test crifical values 1% level -3.439682 Test critical values: 1% level -3.439682
5% level 2865549 5% level -2.865549
10% level 2568961 10% level -2 568961
“MacKinnon (1996) one-sided p-values. *MacKinnon (1996) one-sided p-values.
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10.2.3 Optimal Forecast

» under quadratic loss function the optimal forecast is a conditional mean
ft,h = :U‘t-!—h\t = E()/H-hl]—i) for h = 1, 2, sy S

> properties of a random walk with drift and without drift differ only in the behavior
of the mean, their forecasts will also differ in the behavior of the conditional mean
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10.2.3 Optimal Forecast

> under pure random walk Y; = Y;_1 + &¢, for forecasting horizon h = s:

1. optimal point forecast
Jtos = tigs)t = E(Yeys|lt) = BE(Ye +er41 tetqo + ... +erqs|le) =V
2. forecast error
et,s = Yiqs— ft,s = Yi+err1+eqo+. . Heips —Ye = €t41+et42+. . .+ Eits

3. uncertainty associated with the forecast is summarized by the variance of the
forecast error

Jt2+s|t = var(et,s|It) = var(es41 + et + ... + €44s) = 502

4. the density forecast is the conditional probability density function f(Yi4s|l¢),
assuming ;4 is normally distributed white noise, we have

Yiys|Ie ~ N(Yz,s02)
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10.2.3 Optimal Forecast

» under random walk with drift Yz = ¢+ Y;_1 + €, for forecasting horizon h = s:

1. optimal point forecast
ftis = tgs)t = E(Yeqs|It) = E(sc+Yi+erq1 +erro2+. . terps|le) = sc+ Yy
2. forecast error
et,s = Yiqs—ft,s = sc+Yit+eir1+eiro+. . Aerps—sc—Yr = epp1+ei42+. . AEits

3. uncertainty associated with the forecast is summarized by the variance of the
forecast error

Jt2+s|t = var(et,s|It) = var(es41 + et + ... + €44s) = 502

4. the density forecast is the conditional probability density function f(Yi4s|l¢),
assuming ;4 is normally distributed white noise, we have

Yits|It ~ N(sc+ Yz, s02)
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10.2.3 Optimal Forecast

to summarize

> for pure random walk Y; = Y;_1 + €+ we have

2
h Hi4-h|t Ut+h\t

1 Y o?
2 Y 202
s Y 50'3

» for random walk with drift Y; = c+ Y;_1 + €+ we have

2
h Httn|t Ut+h|t

1 c+Y: o?
2 2c+Y: 202

s sc+ Y sa?
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10.2.3 Optimal Forecast

to summarize

> when there is no drift, the point forecast is constant for any forecasting horizon
and is equal to the most recent value of the process in the information set; when
there is a drift, the point forecast is a line with slope ¢ and intercept Y.

> uncertainty of the forecast is the sum of equally weighted future innovations

» variance of the forecast is a linear function of the forecasting horizon with slope o2
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10.2.3 Optimal Forecast

> the uncertainty of the random walk forecasts increases with the forecast horizon
while that from a trend-stationary process remains constant for any horizon

> dotted lines represent the uncertainty of the point forecast - the 1 standard
deviation interval forecast, f s + Cits|t

Random walk without drift Random walk with drift Tfend-sta“ona.l’y model
Yi=Yi_q+8t Yi=c+ Y1 +& Yi=Po+Pat+&

ts=Bo+ By (t+3)

Y: Y:

time t t+s time t t+s time
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Example: U.S. Real GDP

> figure below shows the time series plots for U.S. Real GDP rGDP, log transformed
U.S. Real GDP log rGDP, and their first differences

GDP LOG(RGDP)
20,000 10.0
16,000 95
12,000 90
8,000 85
4,000 80
T T T T T T T 75 T T T T T T
1950:1 1960:1 19701 19801 1990:1 20001 20101 19501 1960:1 1970:1 19801 19901 20001 2010:1
D(RGDP) D(LOG(RGDP))
300 04
200 03
100 02
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-100 0
200 -01
-300 -02
400 T T T T T T 083 T T T T T T
1950:1 1960:1 19701 19801 1990:1 20001 20101 19501 1960:1 1970:1 19801 19901 20001 2010:1
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Example: U.S. Real GDP

to perform Augmented Dickey Fuller test for the presence of unit root in log
transformed U.S. Real GDP log rGD Py, generate the log transformed series, then
open it and choose View — Unit Root Tests

since log 7G D P; exhibits a clear upward tendency in the option “Include in test
equation” we select “Trend and intercept” to perform the Case Ill variant of the
ADF test

the p-value is 0.8805 so we can not reject the null of a unit root

in the second step, testing the first difference of logrGD Py, so AlogrGD P,
yields p-value 0.0000, and so we reject the null hypothesis of a unit root in
AlogrGDPy

log of U.S. real GDP, logrGDP;, is integrated of order 1, so I(1)

Null Hypothesis: LRGDP has a unit root Null Hypothesis: D(LRGDP) has a unit root
Exogenous: Constant, Linear Trend Exogenous: Constant, Linear Trend
Lag Length: 1 (Automatic - based on SIC, maxlag=15) Lag Length: 0 (Automatic - based on SIC, maxag=15)
t-Statistic Prob* -Statistic Prob*
Dickey-Fuller test stafistic -1.321455 0.8805 Dickey-Fuller test statistic -1151612 0.0000
Test critical values: 1% level -3.991412 Test criical values: 1% level -3.991412
5% level -3.426073 5% level -3.426073
10% level -3136231 10% level -3.138231

*MacKinnon (1996) one-sided pvalues *MacKinnon (1996) one-sided pvalues



Example: U.S. Real GDP

> the first difference of real GDP is thus stationary, and so we estimate the model

AlogrGDP; = Bo + ¢

choose Object — New Object — Equation, in the Equation specification box
enter d(1og(rGDP)) c and in Sample box 1950Q1 2009Q4

Dependent Variable: DLOG(RGDP))
Method: Least Squares

Date: 04/02/17 Time: 21:40
Sample: 1950Q1 200904

Included observations: 240

Std. Error -Statistic

Prob.

0.000832 13.02582

0.0000

Variable Coefficient

C 0.008257
R-squared 0.000000
Adjusted R-squared 0.000000
S.E. ofregression 0.009812
Bum squared resid 0.023010
Log likelihood 769.7480

Durbin-Watson stat 1.155991

Mean dependentvar
3.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.

0.008257
0.008812
-6.408234
-6.391731
-6.400390




Example: U.S. Real GDP

residuals shows that the variance is roughly same over time

.04

-.04 4

Residual

Actual

Fitted
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Example: U.S. Real GDP

> the correlogram for residuals however shows large significant component of PACF
at lag 1, and significant components of ACF at lags 1, 2

> the residuals are thus not white noise
Date: 04/02117 Time: 22:44

Sample: 1950Q1 200904
Included observations: 240

Autocarrelation Partial Correlation AC PAC Q-Stat  Prob
[ ] [ ] 1 0401 0401 39137 0.000
=] 3] 2 0235 0088 52558 0.000
T i 3 -0.074 53.430 0.000
N i 4 -0.044 53502 0.000
[N i 5 -0.066 55293 0.000
N il 6 0070 55316 0.000
i i 7 -0.035 55643 0.000
i i 8 -0.036 56.025 0.000
i P 9 0103 56.804 0.000
il T 0.023 57.862 0.000
al i -0.034 58.048 0.000
a =l -0.162 61.026 0.000
o i -0.040 64.858 0.000
i T 0.061 66.385 0.000
i i -0.045 67.945 0.000
T ] 0100 §8.542 0.000
T | -0.009 69.065 0.000
T i -0.004 69518 0.000
Il | -0.021 69571 0.000
ol K -0.000 69.893 0.000
i i -0.078 71381 0.000
i o 0.051 71586 0.000
i K -0.017 72343 0.000
K Il 24 -0.001 0.036 72343 0.000




Example: U.S. Real GDP

> to fix this issue we include the first regular AR lag in the model, so that u: is now
given by an AR(1) specification

AlogrGDP; = Bo + ut

ur = drur—1 + €t

> to estimate it choose Object — New Object — Equation, in the Equation
specification box enter d(log(rGDP)) c ar(1) and in Sample box 1950Q1 2009Q4

Dependent Variable: D(LOG(RGDP))

Method: ARMA Maximum Likelihood (BFGS)

Date: 04/02/17 Time: 21:40

Sample: 195001 200904

Included observations: 240

Convergence achieved after 5 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prab
c 0.008352 0.000963 8.671928 0.0000
AR(1) 0.416893 0.051680 8.066826 0.0000
SIGMASQ 7.98E-05 5.78E-06 13.80036 0.0000
R-squared 0168033 Mean dependentvar 0.008257
Adjusted R-squared 0.161012 5.D. dependentvar 0.009812
SE. ofregression 0.008988 Akaike info criterion -6.572734
Sum squared resid 0.019144  Schwarz criterion -6.529226
Log likelihood 791.7281 Hannan-Quinn criter. -6.555203
F-statistic 2393350 Durbin-Watson stat 2065524

Prob(F-statistic) 0.000000
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Example: U.S. Real GDP

residuals do not show any systematic pattern
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Example: U.S. Real GDP

correlogram also suggests that the residuals are white noise

Date: 04/02/17 Time: 22:44
Sample: 1950Q1 200904

Included observations: 240
Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation Partial Correlation AC PAC Q-Stat Prob
i i 1 -0.054 -0.054 0.6984
1] (a1 2 0.097 0094 29845 0084
i i 3 -0.025 0015 31329 0.209
K i 4 -0.012 0023 31672 0.367
a a 5 -0.108 -0.108 6.0694 0194
i h 6 0045 0039 65810 0254
i N 7 -0.025 -0.001 67360 0.346
i i & -0.066 -0.081 7.8238 0348
il i 9 0.067 0061 89382 0348
T h 10 0.050 0.062 9.5602 0.387
i th 11 0.056 0.057 10.386 0409
a m 12 -0.105 -0.122 13177 0.282
i o 13 -0.079 -0.116 14773 0254
K th 14 -0.007 0.034 14788 0321
il [l 15 -0.092 -0.072 16.980 0.257
o [nill 16 0085 0.074 18.840 0221
T h 17 0.019 0.023 18930 0272
an h 18 0.028 0.013 19.139 0321
N o 19 -0.020 -0.017 19.242 0377
il ) 20 0.078 0.024 20834 0348
a Lol 21 -0.110 -0.088 24.037 0.241
i h 22 0.026 0.023 24214 0283
i i 23 -0.060 -0.024 25189 0.288
T h 24 0012 0023 25228 0339

41 /46



Example: U.S. Real GDP

> to create h-quarter ahead forecasts for h = 1,2,...,25, so 2010Q1-2017Q1:
choose Forecast and set “Series to forecast” to “rGDP"","Method" to “Dynamic
forecast” and “Forecast sample” to “2010Q1 2017Q1"

> to create a sequence of l-quarter ahead forecasts, from 2010Q1-2017Q1: choose
Forecast and set “Series to forecast” to “rGDP"",”Method" to “Static forecast”
and “Forecast sample” to “2010Q1 2017Q1"
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Example: U.S. Real GDP

> sequence of 1-step ahead forecasts is more precise than the multistep forecast -
RMSE is 77.3231 for the former and 905.1898 for the latter

> confidence interval is narrower in the case of the 1-step ahead forecasts

» note that in the case of the for the multistep forecast the confidence intervals are
getting larger with increasing h, just like in the above stylized diagram for the
forecast from a random walk with drift
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Example: U.S. Real GDP

> comparing the forecast from the deterministic model from HWO06.pdf shows that in
the deterministic trend model the effects of the negative shock of the 2008-2009
disappear over time, but in the stochastic trend model the effects are permanent
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Example: U.S. Real GDP

> comparing the forecast from the deterministic model from HWO06.pdf shows that in
the deterministic trend model the effects of the negative shock of the 2008-2009
disappear over time, but in the stochastic trend model the effects are permanent

1.0

T T T T
1950:1 1975:1 2000:1 2025:1

Log of U.S. Real GDP
—— Log Multistep Forecast - Deterministic Trend Model
—— Log Multistep Forecast - Stochastic Trend Model

45 /46


http://myweb.ttu.edu/jduras/files/teaching/e4306/hw06.pdf

Example: U.S. Real GDP

> comparing the forecast from the deterministic model from HWO06.pdf shows that in
the deterministic trend model the effects of the negative shock of the 2008-2009
disappear over time, but in the stochastic trend model the effects are permanent

> in case of the deterministic trend model the sequence of 1-step ahead forecasts has
RMSE=103.459 and the multistep forecast has RMSE=1649.069

> in case of the stochastic trend model the sequence of 1-step ahead forecasts has
RMSE=77.3231 and the multistep forecast has RMSE=905.1898

» for U.S. real GDP, the stochastic trend model thus yields a more precise forecast
than the stochastic trend model

> the difference in RMSE appears large, but formally we still should perform the
equal predictive power test to compare the two forecasts - see lec13slides.pdf
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