
Eco 4306 Economic and Business Forecasting
Lecture 18

Chapter 10: Forecasting the Long Term: Deterministic and Stochastic Trends
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Motivation

I we analyzed the behavior and constructed forecasts for time series that contain a
deterministic trend

I we will now look at the stochastic trend, and develop tools to be able to
distinguish between the two cases
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10.2 Stochastic Trends

I a stochastic trend is the result of the accumulation over time of random shocks or
innovations

Xt =
t−1∑
j=0

εt−j = εt + εt−1 + · · ·+ ε1

where εt−j is a white noise
I a process that contains a stochastic trend is called a unit root process
I note that for any j the effect of a shock εt−j on Xt is permanent, it does not

diminish over time even as t→∞
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10.2 Stochastic Trends

I an AR(1) process Yt = c+ φ1Yt−1 + εt with φ1 = 1 has a stochastic trend, this
process is called a random walk, and we distinguish between
1. pure random walk without drift Yt = Yt−1 + εt, so the case with c = 0
2. random walk with drift Yt = c + Yt−1 + εt, where c 6= 0 is a drift

I for a pure random walk we have by repeated backward substitutions

Yt = Yt−1 + εt

= Yt−2 + εt−1 + εt

= . . .

= Y0 + ε1 + . . .+ εt−1 + εt

= Y0 +
t−1∑
j=0

εt−j
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10.2 Stochastic Trends

I in case of a random walk with drift, if we substitute backward we obtain

Yt = c+ Yt−1 + εt

= c+ (c+ Yt−2 + εt−1) + εt

= . . .

= Y0 + ct+ ε1 + . . .+ εt−1 + εt

= Y0 + ct+
t−1∑
j=0

εt−j

I presence of drift term in random walk thus results a deterministic time trend ct
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10.2 Stochastic Trends

I both pure random walk and the random walk with drift are highly persistent
(because effects of shocks are permanent)
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10.2 Stochastic Trends

I random walk without drift will either grow, decline or just meander around
I random walk with drift will exhibit a clear upward tendency when c > 0 and a

downward tendency when c < 0

five simulations of random walk without drift vs random walk with drift
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10.2.2 Stationarity Properties
for pure random walk without drift Yt = Yt−1 + εt = Y0 +

∑t−1
j=0 εt−j the first and

second moments are

I unconditional mean

µt = E(Yt) = E

(
Y0 +

t−1∑
j=0

εt−j

)
= Y0

I unconditional variance

γt,t = var(Yt) = var

(
Y0 +

t−1∑
j=0

εt−j

)
= tσ2

ε

I autocovariance of order k

γt,t−k = cov(Yt, Yt−k) = E[(Yt − µt)(Yt−k − µt−k)]

= E

[( t−1∑
j=0

εt−j

)( t−k−1∑
j=0

εt−j

)]
= (t− k)σ2

ε

I autocorrelation of order k

ρt,t−k =
γt,t−k

√
γt,t
√
γt−k,t−k

=
(t− k)σ2

ε√
tσ2

ε

√
(t− k)σ2

ε

=

√
t− k
t
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10.2.2 Stationarity Properties

I unconditional mean is a constant
I unconditional variance and the unconditional autocovariances depend on time -

they are increasing functions of time
I pure random walk without drift is thus first but not second order weakly stationary
I since variance is an increasing function of time, potential outcomes of random

variable Yt become more dispersed, increasing the probability of getting very large
or very small observations

I autocorrelation are asymptotically 1 regardless of the distance k, sample
autocorrelations will be very close to 1, with very slow decay
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10.2.2 Stationarity Properties
for the random walk with drift Yt = c+ Yt−1 + εt = Y0 + ct+

∑t−1
j=0 εt−j the first

and second moments are

I unconditional mean

µt = E(Yt) = E

(
Y0 + ct+

t−1∑
j=0

εt−j

)
= Y0 + ct

I unconditional variance

γt,t = var(Yt) = var

(
Y0 + ct+

t−1∑
j=0

εt−j

)
= tσ2

ε

I autocovariance of order k

γt,t−k = cov(Yt, Yt−k) = E[(Yt − µt)(Yt−k − µt−k)]

= E

[( t−1∑
j=0

εt−j

)( t−k−1∑
j=0

εt−j

)]
= (t− k)σ2

ε

I autocorrelation of order k

ρt,t−k =
γt,t−k

√
γt,t
√
γt−k,t−k

=
(t− k)σ2

ε√
tσ2

ε

√
(t− k)σ2

ε

=

√
t− k
t
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10.2.2 Stationarity Properties

I mean, variance, and autocovariances are all increasing functions of time
I the difference compared to a random walk without drift is that the mean now

contains a deterministic linear trend
I random walk with drift is thus neither first nor second order weakly stationary

11 / 46



10.2.2 Stationarity Properties
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10.2.2 Stationarity Properties

note that

I the first difference of a pure random walk process is

∆Yt = Yt − Yt−1 = (Yt−1 + εt)− Yt−1 = εt

I the first difference of a random walk process with a drift is

∆Yt = Yt − Yt−1 = (c+ Yt−1 + εt)− Yt−1 = c+ εt

I so in both case by differencing we have obtained a second order weakly stationary
process
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10.2.2 Stationarity Properties

I random walks without and with drift are thus examples of a difference stationary
process - a nonstationary process for which differencing yield a stationary process

I a difference stationary process is said to be integrated of order d, denoted as I(d)
if it need of to be differenced d times to obtain a stationary process

I random walk is thus I(1) since ∆Yt is stationary
I a stationary process is I(0) since Yt itself is stationary and no differencing is needed
I for economic and business data, we rarely have difference stationary series that

need to be differenced more than twice, most need to be differenced only once or
not at all
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10.2.2 Stationarity Properties

to summarize

I process with deterministic trend
I mean is growing over time, but variance and autocovariances do not depend on time
I this process is not second order weakly stationary, but can be made second order weakly

stationary by detrending
I often referred to as trend stationary process
I effects of shocks are temporary

I process with stochastic trend
I mean either constant or growing over time, variance and autocovariances depend on time
I this process is not second order weakly stationary, and can not be made second order

weakly stationary by detrending
I often referred to as difference stationary process
I effects of shocks are permanent
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10.2.2 Stationarity Properties

five simulations of trend stationary time series vs random walk with drift

0 50 100 150 200 250

−
10

0
10

20
30

40
50

yt = ct + ut  where  ut=φ1ut−1 + εt

0 50 100 150 200 250

−
10

0
10

20
30

40
50

yt = c + yt−1+εt

16 / 46



10.2.2 Stationarity Properties

It is important to be able to distinguish between the two cases:

I with trend stationary series shocks have transitory effects
I with difference stationary series shocks have permanent effects
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In addition, as we will see later additional issues arise with difference stationary series in
the context of multivariate time series analysis

17 / 46



10.2.2 Stationarity Properties

U.S. Real GDP and the effect of 2008-2009 recession

two alternative explanations

I difference stationary process implying permanent effect of a negative shock
I trend stationary process with a structural break (change in intercept and/or trend)
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10.2.2.1 Testing for Unit Root

I next goal: develop tools to be able to determine whether a time series has a unit
root (contains stochastic trend) or is trend stationary (contains deterministic trend)

I consider first an AR(1) model Yt = φ1Yt−1 + εt which has a unit root if φ1 = 1
I to test whether a unit root is present is same as to test hypothesis H0 : φ1 = 1

against on sided alternative H1 : φ1 < 1
I in practice, the model is rewritten as ∆Yt = βYt−1 + εt where β = φ1 − 1 and the

unit root is present if β = 0
I in the rewritten model to test whether a unit root present is same as to test
H0 : β = 0 against on sided alternative H1 : β < 0

I this test can however not be performed using usual t-test - distribution of the test
statistic in this case is not Student

I we need to use the so called Dickey-Fuller test instead
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10.2.2.1 Testing for Unit Root

I there are three variants of the Dickey-Fuller test for the presence of a unit root

I Case I (no constant or trend)

H0 : Yt = Yt−1 + εt (Yt is I(1) without drift)
H1 : Yt = φ1Yt−1 + εt (Yt is I(0) with zero mean)

I Case II (constant only)

H0 : Yt = Yt−1 + εt (Yt is I(1) without drift)
H1 : Yt = c+ φ1Yt−1 + εt (Yt is I(0) with nonzero mean)

I Case III (constant and trend)

H0 : Yt = c+ Yt−1 + εt (Yt is I(1) with drift)
H1 : Yt = c+ αt+ φ1Yt−1 + εt (Yt is I(0) with deterministic trend)
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10.2.2.1 Testing for Unit Root

I we choose the version of the test that is compatible with the data under the null
and under the alternative hypotheses

I trend properties of the data under the alternative hypothesis will determine the
form of the test regression used

I in particular
I case I would be rarely used, it is appropriate only for time series for which there is some

strong reason to believe that the unconditional mean is zero
I case II is appropriate for non-trending economic and financial series like exchange rates,

interest rates and spreads, unemployment rate, inflation rate, . . .
I case III is appropriate for trending time series like asset prices or the levels of

macroeconomic aggregates like real GDP, industrial production, employment
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10.2.2.1 Testing for Unit Root

I for ease of exposition, we have only considered a unit root in AR(1) process
Yt = φ1Yt−1 + εt

I but in general any ARMA process may contain a unit root
I in this case we need to modify the Dickey-Fuller test to allow for a more

complicated dynamics
I this is done Augmented Dickey Fuller test, which tests whether β = 0 in a model

∆Yt = βYt−1 + δi

p∑
i=1

∆yt−i + εt

where again a constant c and a trend αt may be added if necessary, just like it is
done in the Dickey-Fuller test

I the number of lags included in the regression, p, is usually determined by
information criteria (AIC or SIC)
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10.2.2.1 Testing for Unit Root

I if we fail to reject the unit root in Yt, we check for additional unit roots running
the Dickey-Fuller test on the successive differences of the series, ∆Yt, ∆2Yt, . . .
until we reject the unit root in favor of a stationary model

I the general representation of a process with linear dependence: ARIMA(p, d, q)

φ(L)∆dYt = θ(L)εt

where φ(L) = 1− φ1L− . . .− φpLp and θ(L) = 1 + θ1L+ . . .+ θqLq

I when d = 0, there isn’t a unit root, Yt is stationary, and we model the time
dependence by building an ARMA(p, q) model for Yt

I when d = 1, there is a unit root, ∆Yt is stationary, and we model time dependence
by building an ARMA(p, q) model for ∆Yt
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Example: Federal Funds Rate, Unemployment Rate, CPI Inflation Rate

I figure below shows the time series plots for Effective Federal Funds Rate FEDFUNDS,
Unemployment Rate UNRATE, CPI inflation (measured as % change from year ago
in CPI) CPI_PCH12, and their first differences, during the period from 1960M1 to
2016M12
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https://fred.stlouisfed.org/series/FEDFUNDS
https://fred.stlouisfed.org/series/UNRATE
https://fred.stlouisfed.org/series/CPIAUCSL


Example: Federal Funds Rate

I to perform Augmented Dickey Fuller test for the presence of unit root in Federal
Funds Rate FEDFUNDS open the series and choose View → Unit Root Tests

I since FEDFUNDS does not exhibit a clear upward or downward tendency in the
option “Include in test equation” we select “Intercept” to perform the Case II
variant of the ADF test

I the p-value is 0.1573 so we can not reject the null of a unit root
I in the second step, testing the first difference of FEDFUNDS then yields p-value

0.0000, and so we reject the null hypothesis of a unit root in the first difference of
FEDFUNDS

I we thus conclude that FEDFUNDS is integrated of order 1, so I(1)
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Example: Unemployment Rate

I to perform Augmented Dickey Fuller test for the presence of unit root in Federal
Funds Rate UNRATE open the series and choose View → Unit Root Tests

I since UNRATE does not exhibit a clear upward or downward tendency in the option
“Include in test equation” we select “Intercept” to perform the Case II variant of
the ADF test

I the p-value is 0.0304 so we can reject the null of a unit root at 10% and 5% levels
I we thus conclude that UNRATE is integrated of order 0, so I(0)
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Example: CPI Inflation

I to perform Augmented Dickey Fuller test for the presence of unit root in Federal
Funds Rate CPI_PCH12 open the series and choose View → Unit Root Tests

I since CPI_PCH12 does not exhibit a clear upward or downward tendency in the
option “Include in test equation” we select “Intercept” to perform the Case II
variant of the ADF test

I the p-value is 0.0643 so we can not reject the null of a unit root at 1% and 5%
levels

I in the second step, testing the first difference of CPI_PCH12 then yields p-value
0.0000, and so we reject the null hypothesis of a unit root in the first difference of
CPI_PCH12

I we thus conclude that CPI_PCH12 is integrated of order 1, so I(1)
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10.2.3 Optimal Forecast

I under quadratic loss function the optimal forecast is a conditional mean
ft,h = µt+h|t = E(Yt+h|It) for h = 1, 2, . . . , s

I properties of a random walk with drift and without drift differ only in the behavior
of the mean, their forecasts will also differ in the behavior of the conditional mean
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10.2.3 Optimal Forecast

I under pure random walk Yt = Yt−1 + εt, for forecasting horizon h = s:

1. optimal point forecast

ft,s = µt+s|t = E(Yt+s|It) = E(Yt + εt+1 + εt+2 + . . .+ εt+s|It) = Yt

2. forecast error

et,s = Yt+s−ft,s = Yt +εt+1 +εt+2 + . . .+εt+s−Yt = εt+1 +εt+2 + . . .+εt+s

3. uncertainty associated with the forecast is summarized by the variance of the
forecast error

σ2
t+s|t = var(et,s|It) = var(εt+1 + εt+2 + . . .+ εt+s) = sσ2

ε

4. the density forecast is the conditional probability density function f(Yt+s|It),
assuming εt+s is normally distributed white noise, we have

Yt+s|It ∼ N(Yt, sσ
2
ε)
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10.2.3 Optimal Forecast

I under random walk with drift Yt = c+ Yt−1 + εt, for forecasting horizon h = s:

1. optimal point forecast

ft,s = µt+s|t = E(Yt+s|It) = E(sc+Yt + εt+1 + εt+2 + . . .+ εt+s|It) = sc+Yt

2. forecast error

et,s = Yt+s−ft,s = sc+Yt+εt+1+εt+2+. . .+εt+s−sc−Yt = εt+1+εt+2+. . .+εt+s

3. uncertainty associated with the forecast is summarized by the variance of the
forecast error

σ2
t+s|t = var(et,s|It) = var(εt+1 + εt+2 + . . .+ εt+s) = sσ2

ε

4. the density forecast is the conditional probability density function f(Yt+s|It),
assuming εt+s is normally distributed white noise, we have

Yt+s|It ∼ N(sc+ Yt, sσ
2
ε)
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10.2.3 Optimal Forecast
to summarize

I for pure random walk Yt = Yt−1 + εt we have

h µt+h|t σ2
t+h|t

1 Yt σ2
ε

2 Yt 2σ2
ε

...
s Yt sσ2

ε

I for random walk with drift Yt = c+ Yt−1 + εt we have

h µt+h|t σ2
t+h|t

1 c+ Yt σ2
ε

2 2c+ Yt 2σ2
ε

...
s sc+ Yt sσ2

ε
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10.2.3 Optimal Forecast

to summarize

I when there is no drift, the point forecast is constant for any forecasting horizon
and is equal to the most recent value of the process in the information set; when
there is a drift, the point forecast is a line with slope c and intercept Yt.

I uncertainty of the forecast is the sum of equally weighted future innovations
I variance of the forecast is a linear function of the forecasting horizon with slope σ2

ε
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10.2.3 Optimal Forecast

I the uncertainty of the random walk forecasts increases with the forecast horizon
while that from a trend-stationary process remains constant for any horizon

I dotted lines represent the uncertainty of the point forecast - the 1 standard
deviation interval forecast, ft,s ± σt+s|t
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Example: U.S. Real GDP

I figure below shows the time series plots for U.S. Real GDP rGDP, log transformed
U.S. Real GDP log rGDP, and their first differences
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Example: U.S. Real GDP

I to perform Augmented Dickey Fuller test for the presence of unit root in log
transformed U.S. Real GDP log rGDPt, generate the log transformed series, then
open it and choose View → Unit Root Tests

I since log rGDPt exhibits a clear upward tendency in the option “Include in test
equation” we select “Trend and intercept” to perform the Case III variant of the
ADF test

I the p-value is 0.8805 so we can not reject the null of a unit root
I in the second step, testing the first difference of log rGDPt, so ∆ log rGDPt,

yields p-value 0.0000, and so we reject the null hypothesis of a unit root in
∆ log rGDPt

I log of U.S. real GDP, log rGDPt, is integrated of order 1, so I(1)
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Example: U.S. Real GDP

I the first difference of real GDP is thus stationary, and so we estimate the model

∆ log rGDPt = β0 + εt

choose Object → New Object → Equation, in the Equation specification box
enter d(log(rGDP)) c and in Sample box 1950Q1 2009Q4
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Example: U.S. Real GDP

residuals shows that the variance is roughly same over time
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Example: U.S. Real GDP
I the correlogram for residuals however shows large significant component of PACF

at lag 1, and significant components of ACF at lags 1, 2
I the residuals are thus not white noise
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Example: U.S. Real GDP
I to fix this issue we include the first regular AR lag in the model, so that ut is now

given by an AR(1) specification

∆ log rGDPt = β0 + ut

ut = φ1ut−1 + εt

I to estimate it choose Object → New Object → Equation, in the Equation
specification box enter d(log(rGDP)) c ar(1) and in Sample box 1950Q1 2009Q4
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Example: U.S. Real GDP

residuals do not show any systematic pattern
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Example: U.S. Real GDP

correlogram also suggests that the residuals are white noise
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Example: U.S. Real GDP

I to create h-quarter ahead forecasts for h = 1, 2, . . . , 25, so 2010Q1-2017Q1:
choose Forecast and set “Series to forecast” to “rGDP”“,”Method" to “Dynamic
forecast” and “Forecast sample” to “2010Q1 2017Q1”

I to create a sequence of 1-quarter ahead forecasts, from 2010Q1-2017Q1: choose
Forecast and set “Series to forecast” to “rGDP”“,”Method" to “Static forecast”
and “Forecast sample” to “2010Q1 2017Q1”
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Example: U.S. Real GDP

I sequence of 1-step ahead forecasts is more precise than the multistep forecast -
RMSE is 77.3231 for the former and 905.1898 for the latter

I confidence interval is narrower in the case of the 1-step ahead forecasts
I note that in the case of the for the multistep forecast the confidence intervals are

getting larger with increasing h, just like in the above stylized diagram for the
forecast from a random walk with drift
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Example: U.S. Real GDP

I comparing the forecast from the deterministic model from HW06.pdf shows that in
the deterministic trend model the effects of the negative shock of the 2008-2009
disappear over time, but in the stochastic trend model the effects are permanent
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http://myweb.ttu.edu/jduras/files/teaching/e4306/hw06.pdf


Example: U.S. Real GDP

I comparing the forecast from the deterministic model from HW06.pdf shows that in
the deterministic trend model the effects of the negative shock of the 2008-2009
disappear over time, but in the stochastic trend model the effects are permanent
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Example: U.S. Real GDP

I comparing the forecast from the deterministic model from HW06.pdf shows that in
the deterministic trend model the effects of the negative shock of the 2008-2009
disappear over time, but in the stochastic trend model the effects are permanent

I in case of the deterministic trend model the sequence of 1-step ahead forecasts has
RMSE=103.459 and the multistep forecast has RMSE=1649.069

I in case of the stochastic trend model the sequence of 1-step ahead forecasts has
RMSE=77.3231 and the multistep forecast has RMSE=905.1898

I for U.S. real GDP, the stochastic trend model thus yields a more precise forecast
than the stochastic trend model

I the difference in RMSE appears large, but formally we still should perform the
equal predictive power test to compare the two forecasts - see lec13slides.pdf
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