Eco 4306 Economic and Business Forecasting

Lecture 16
Chapter 10: Forecasting the Long Term: Deterministic and Stochastic Trends
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Motivation

»> ARMA models require the data are to be second order weakly stationary

P they thus can not be used for time series that grow over time, unless we transform
them (by taking first differences, or using log and then taking first differences)

» our next goal is to learn how to analyze nonstationary data - account for the
persistent upward or downward tendency in many economic and business time series
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Overview

main objectives of Chapter 10

1. understand deterministic and stochastic trends, construct models that produce
these trends and analyze their properties and forecasts

2. design statistical procedures to detect deterministic and stochastic trends in the
data
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10.1 Deterministic Trends

P simple linear model with a deterministic trend
Y = Bo + Bit + et

where f3g is the intercept and (31 slope and ¢; a white noise error
P but trends can have different shapes, linear trend is just one particular case

» more generally, a model with deterministic trend can be written as
Yi=g(t) +et

where g(t) is some function that specifies the deterministic trend
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10.1.1 Trend Shapes
U.S. Nonfarm Business Sector, Output and Productivity, Indices, 1947Q1=100
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10.1.1 Trend Shapes

Consumer Price Index: Medical Care
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10.1.1 Trend Shapes

Average Number of People Living in U.S.a Household
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10.1.1 Trend Shapes

Employment in Manufacturing
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10.1.1 Trend Shapes
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10.1.1 Trend Shapes

most common trend specifications

v

linear trend, g(t) = B1t
> quadratic trend, g(t) = Bo + Bit + Bat?

> polynomial trend, g(t) = Bo + Bit + B2t + ... + Bnt™
> exponential trend, g(t) = Boel1t
>

logistic trend, g(t) = %
o
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10.1.1 Trend Shapes

simulated series Y; = g(t) + &¢ for different trend specifications

linear trend quadratic trend polynomial trend

B1>0 B2 >0

0L T T T T 2 T T T T T T ST T T T T T T
R e e #e @ T = T e He @
—V_UN.A — Y_LN_A_TREND —Y_QUAD_A — Y_QUAD_A_TREND —V_POLY_A — Y_POLY_A_TREND
B1 <0 B2 <0

190 10 19 10 180 20m 2070 190 10 19m 180 180 200 2010 190 1e@ 1M 180 10 200 2010

— Y_LIN_B — Y_UN_B_TREND — Y_QUAD_B — Y_QUAD_B_TREND — Y_POLY_B — Y_POLY_B_TREND

11/32



10.1.1 Trend Shapes

simulated series Y; = g(t) + &¢ for different trend specifications

exponential trend logistic trend logistic trend
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10.1.1 Trend Shapes
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10.1.2 Trend Stationarity

> consider a process with a deterministic trend, Y; = g(¢t) + ¢, where &; is white
noise

» the unconditional mean is
e = EY:) = E(g(t) + ) = E(g(t)) + E(et) = g(t)
» the unconditional variance is

Y0 = var(Yy) = E[(Y: — pt)?] = Ele?] = o2

£

P autocovariance of order k is
Yo = El(Ye — ) (Yi—g — pre—1)] = Eletes—x] =0

P autocorrelation of order k is
_ Ok _
pe=—=0
Y0
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10.1.2 Trend Stationarity

» thus the unconditional mean u; is time varying, but the unconditional variance is
not, and the auto-covariance and autocorrelation functions do not depend on time

» because the mean of a process Y; is not constant over time, it is not first order
weakly stationary process

» but because the variance and autocovariances satisfy the requirements for second
order weak stationarity, the detrended process, §: = y+ — ut, that is, 5 = yr — g(t),
is second order weakly stationary, and we say that y; is trend-stationary
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10.1.3 Optimal Forecast

» recall: under quadratic loss function the optimal forecast is the conditional mean
feon = egnpe = EViqnll) for h=1,2,...,s

P> we next analyze this optimal forecast under quadratic loss function for h = 1,2,...
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10.1.3 Optimal Forecast

if Yz = g(t) + e+ where ¢ is white noise, for the forecasting horizon h = 1 we have

1. optimal point forecast

feor = pagape = E(YVeqalle) = E(g(t + 1) + era|le) = g(t + 1)

2. forecast error

et,1 = Y1 — fra=g(t+1) +ep1 — gt +1) = e

3. uncertainty associated with the forecast is summarized by the variance of the
forecast error

0t2+1\t = wvar(e1|I;) = var(eg1) = o2

4. the density forecast is the conditional probability density function f(Y:41|I¢),
assuming €441 is normally distributed white noise, we have

Yiy1lle ~ N(g(t + 1), 02)
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10.1.3 Optimal Forecast

» in general if Y; = g(t) + € where ¢ is white noise, for the forecast at horizon
h = s we have
ft,s = g(t + S)
€t,s = Et+s

2 _ 2
Ottslt — Te

Yits|Tt ~ N(g(t+s),02)

» note that the uncertainty of the forecast is thus same regardless of the forecasting
horizon, because we assumed that ¢ is white noise

» in general, model with deterministic trend can accommodate linear dependence in
its stochastic component: instead of Y; = g(¢) + ¢ where £¢ is white noise, we
then have Y; = g(t) + ut where u; follows some ARMA(p, ¢) model
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Example: Earnings per Share of Johnson and Johnson

P time series plot shows that earnings per share of Johnson and Johnson grew
exponentially in the period from 1960Q1 to 1980Q4

P in addition, there is a seasonal pattern that will need to be incorporated into the
estimated model
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Example: Earnings per Share of Johnson and Johnson

> to build a model for forecasting, we start by generating time series for trend:

choose Object — Generate Series and enter t = @trend

P to estimate a model with exponential trend

JINJy = Bo + Bre2t + ¢,

choose Object — New Object — Equation, in the Equation specification box
enter INJ = c(1) + c(2)*exp(c(3)*t) and in Sample 1960Q1 1978Q4

Dependent Variable: JNJ

Method: Least Squares (Gauss-Newton / Marquardt steps)

Date: 03/22/19 Time: 00:23
Sample: 195001 197804
Included observations: 76

Convergence achieved after 23 iterations
Coefiicient covariance computed using outer product of gradients

JNJ = C(1) + G2 EXP(C(3)*T)

Coefficient Std. Error t-Statistic Prob.
cin -0.805113 0374703 -2.148670 0.0350
Ci2) 1.079629 0232709 4639389 0.0000
Ci3) 0.032518 0.002683 12.12037 0.0000
R-zquared 0.962673 Mean dependentvar 3.853158
Adjusted R-squared 0961650 S.D. dependentvar 3.2530986
3.E. ofregression 0.637234 Akaike info criterion 1.975315
Sum squared resid 29/4294 Schwarz criterion 2067318
Log likelihood -72.06197 Hannan-Quinn criter. 2012084
F-stalistic 9413322 Durbin-Watson stat 1711600

Prob(F-statistic) 0.000000
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Example: Earnings per Share of Johnson and Johnson

the plot with actual vs fitted data and the regression residuals, which can be obtained
by selecting View — Actual, Fitted, Residual — Actual, Fitted, Residual Graph

reveals two problems with the estimated model:

P it can match the trend, but not the seasonal pattern

» the variance of residuals does not appear to be constant, it is increasing over time

%

= \mMAVAM |

1960 1962 1964 1966 1968 1970 1972 1974 1976 1978

w N P O Rk N

Residual Actual Fitted

21/32



Example: Earnings per Share of Johnson and Johnson

> to deal with issue of variance of residuals increasing over time we reestimate the

model using log transformed data

log JNJ: = Bo + B1t + &t

P note that this is equivalent to a multiplicative model JN J; = Boeﬂlts} where

Bo = ePo and &t = et

> to estimate this model choose Object — New Object — Equation, in the
Equation specification box write 1og(JNJ) c¢ t and in Sample 1960Q1 1978Q4

Dependent Variable: LOG(IMNJ)
Method: Least Squares

Date: 03/22119 Time: 00:23
Sample: 1960011 197804
Included observations: 76

Variable Coefficient Std. Error t-Statistic Prob.

C -0.646089 0.034721  -18.60775 0.0000

T 0.042448 0.000799 53.11276 0.0000
R-squared 0974438 Mean dependentvar 0.945698
Adjusted R-squared 0.974093 5.D. dependentvar 0.949594
SE. ofregression 0152843 Akaike info criterion -0.892842
Sum squared resid 1728722 Schwarz criterion -0.831507
Log likelihood 3592800 Hannan-Quinn criter. -0.868330
F-statistic 2820.966 Durbin-Watson stat 1.674157
Prob(F-statistic) 0.000000
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Example: Earnings per Share of Johnson and Johnson

residuals shows that the variance is now roughly same over time, but the model still can
not match the seasonal pattern
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Example: Earnings per Share of Johnson and Johnson

> this finding is supported by the correlogram, obtained using View — Residual
Diagnostics — Correlogram - Q-statistics, which shows large significant
component of PACF at lag 4, and significant components of ACF at lags 4, 8, 12

P the residuals are thus not white noise

Date: 02/22/19 Time: 00:23
Sample: 1960Q1 197804
Included observations: 76

Autocarrelation Partial Correlation AC PAC Q-Stat  Prob
Ve - 1 0101 0101 0.8026 0370
i o 2 0.058 0.048 1.0678 0.586
o v 3 0.004 -0.006 1.0693 0.784
[ | \ [ 4 0.655 0.660 38340 0.000
Vi L= 5 0.029 -0.179 36.409 0.000
v o 6 -0.006 -0.066 36.412 0.000
v [N 7 0.005 0120 36414 0.000
' [ Vo 8 0476 0045 56150 0.000
I =] 9 -0.085 -0204 56786 0.000
I g 10 -0.111 -0.073 57.896 0.000
g = 11 -0.127 -0.157 58.369 0.000
= g 12 0281 -0.066 66.665 0.000
1= ol 13 -0.158 -0.033 69.003 0.000
o o 14 -0.184 -0.007 72224 0.000
I~ N 15 -0.159 0008 74.674 0.000
i v 16 0145 -0033 76747 0000
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Example: Earnings per Share of Johnson and Johnson

» we thus include the seasonal term in the specification of the innovation u¢

log JNJ; =

» to do this choose Object — New Object — Equation , in the Equation
specification box enter Log(JNJ) c¢ t sar(4) and in Sample 1960Q1 1978Q4

Ut =

Dependent Variable: LOG{INJ)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 03/2219 Time: 00:23

Sample: 1950Q11 197804
Included observations: 76

Bo + B1t + ut
Paut—q + €t

Convergence achieved after 20 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.
Cc -0.558737 0.056365 -9.912881 0.0000
T 0.040451 0.001536 26.34756 0.0000
AR(4) 0.834896 0.054380 15.35290 0.0000
SIGMASQ 0.009057 0.001312 6.906031 0.0000
R-squared 0989822 Mean dependentvar 0945598
Adjusted R-squared 0989397 3.D. dependentvar 0.949594
SE. ofregression 0.097779 Akaike info criterion -1698175
Sum squared resid 0.688366 Schwarz criterion -1.575505
Log likelihood 68530668 Hannan-Quinn criter. -1.649150
F-statistic 2333.918 Durbin-Watson stat 1.317320
Prob(F-statistic) 0.000000
Inverted AR Rools .98 .00-.98i .00+96i -96
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Example: Earnings per Share of Johnson and Johnson

residuals no longer have any recognizable seasonal pattern
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Example: Earnings per Share of Johnson and Johnson

but the first lag in the ACF and PACF is significant, resulting in p-values for Ljung-Box

test that are lower than 0.05

Date: 03/22119 Time: 00:23

Sample: 1960Q1 197804

Included observations: 76

Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation Partial Correlation AC

PAC

Q-Stat Prob®

L]

0310
0.142
-0.017
-0.130
0.088
0.091
0.256
0.089
-0.012
10 -0.034
11 -0.164
-0.012
13 -0.126
14 -0.063
097
16 -0.099

g N ISR

JEBE P = I =

_-._.l._..__.-.!___'_l..-.__

]

0.310
0.050
-0.083
-0123
0.194
0.047
0.199
-0.086
-0.029
-0.010
-0.104
0.020
-0.168
-0.044
-0.094
0.017

76158

92285 0002
92531 0010
10.646 0.014
11.287 0.024
11.892 0.035
17.628 0.007
18316 0.011
18.328 0.019
18431 0030
20886 0022
20.899 0034
22403 0033
22786 0.044
23701 0.050
24863 0055

*Probabilities may not be valid for this equation specification.
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Example: Earnings per Share of Johnson and Johnson

P to fix this issue we include the first regular AR lag in the model, so that wu; is now

given by a multiplicative AR(1)+SAR(1) specification
log JNJ¢ = Bo + B1t + ut

> to estimate this model choose Object — New Object — Equation, in the
Equation specification box enter 1og(JNJ) ¢ t ar(1) sar(4) and in Sample

1960Q1 1978Q4

ut = Grur—1 + Paut—4 + pr1paut—s5 + €t

Dependent Variable: LOG(INJ)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 03/22/19 Time: 00:23

Sample: 1960011 197804
Included observations: 76

Convergence achieved after 60 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.
C -0.525757 0115973 -4.533449 0.0000
T 0.029723 0.002461 16.14400 0.0000
AR(1) 0.297928 0.124682 2.389497 0.0195
SAR(4) 0.863483 0.051306 16.83009 0.0000
SIGMASQ 0.008312 0.001298 6.401631 0.0000
R-zquared 0.990659 Mean dependentvar 0.945698
Adjusted R-squared 0990133 S.D. dependentvar 0.949594
S.E. ofregression 0.094326 Akaike info criterion -1.747155
Sum squared resid 0.631709 Schwarz criterion -1.593817
Log likelihood 71.29189 Hannan-Quinn criter. -1.685874
F-statistic 1882531 Durbin-Watson stat 1871645
Prob(F-statistic) 0.000000
Inverted AR Roots 96 .30 .00-.96i .00+96i
-.96
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Example: Earnings per Share of Johnson and Johnson

residuals do not show any systematic pattern
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Example: Earnings per Share of Johnson and Johnson

correlogram also suggests that the residuals are white noise

Date: 03/2219 Time: 00:23
Sample: 196001 197804
Included observations: 78
Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation Partial Correlation AC PAC Q-Stat Prob®
Vi ' ' 1 0032 0032 00795
v v 2 0075 0074 05327
o [ 3 -0.010 -0.014 05404 0462
[ [ ) 4 -0.191 -0198 35556 0.169
=N =N 5 0119 0138 47300 0193
vl 1 1 6 0.008 0032 47356 0216
=] [ =] 7 0262 0249 10.641 0.059
v ' 1 8 0018 -0.050 10670 0.099
o ' 1 9 -0.015 -0.004 10689 0153
Vi 1 1 10 0041 0034 10842 0211
(= g 11 -0.177 -0.094 13712 0133
vl v 12 0.079 0.027 14.283 0.160
= =) 13 -00111 -0.127 15.442 0163
vl [ 14 0.007 -0.031 15447 0218
o =) 15 -0.073 -0.131 15984 0.251
g 1 1 16 -0.086 -0.019 16.691 0.273

*Probabilities may not be valid for this equation specification
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Example: Earnings per Share of Johnson and Johnson

> to create h-quarter ahead forecasts for h = 1,2,...,12, so 1979Q1-1981Q4:
choose Forecast and set “Series to forecast” to “JNJ"*,"Method" to “Dynamic
forecast” and “Forecast sample” to “1979Q1 1981Q4"

> to create a sequence of 1-quarter ahead forecasts, from 1979Q1-1981Q4: choose
Forecast and set “Series to forecast” to “JNJ"","Method" to “Static forecast” and
“Forecast sample” to “1979Q1 1981Q4"
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Example: Earnings per Share of Johnson and Johnson

» sequence of 1-step ahead forecasts is more precise than the multistep forecast -
RMSE is 0.8480 for the former and 0.9913 for the latter

» confidence interval is narrower in the case of the 1-step ahead forecasts

multistep forecast is not able to account for a change in the seasonal pattern,
1-step ahead forecasts are eventually able to do that though with a one year delay

1970:1 1972:1 1974:1 1976:1 1978:1 1980:1
—— Multistep Forecast, AR(3) model ~ —emmen 95% confidence interval
Fixed Scheme 1 step Ahead Forecast, AR(3) model =----- 95% confidence interval
——— Actual Data
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