
Eco 4306 Economic and Business Forecasting
Lecture 16

Chapter 10: Forecasting the Long Term: Deterministic and Stochastic Trends
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Motivation

I ARMA models require the data are to be second order weakly stationary
I they thus can not be used for time series that grow over time, unless we transform

them (by taking first differences, or using log and then taking first differences)
I our next goal is to learn how to analyze nonstationary data - account for the

persistent upward or downward tendency in many economic and business time series
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Overview

main objectives of Chapter 10

1. understand deterministic and stochastic trends, construct models that produce
these trends and analyze their properties and forecasts

2. design statistical procedures to detect deterministic and stochastic trends in the
data
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10.1 Deterministic Trends

I simple linear model with a deterministic trend

Yt = β0 + β1t+ εt

where β0 is the intercept and β1 slope and εt a white noise error
I but trends can have different shapes, linear trend is just one particular case
I more generally, a model with deterministic trend can be written as

Yt = g(t) + εt

where g(t) is some function that specifies the deterministic trend
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10.1.1 Trend Shapes
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10.1.1 Trend Shapes
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10.1.1 Trend Shapes
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10.1.1 Trend Shapes
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10.1.1 Trend Shapes
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10.1.1 Trend Shapes

most common trend specifications
I linear trend, g(t) = β1t

I quadratic trend, g(t) = β0 + β1t+ β2t2

I polynomial trend, g(t) = β0 + β1t+ β2t2 + . . .+ βntn

I exponential trend, g(t) = β0eβ1t

I logistic trend, g(t) = β2
1+β0eβ1t
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10.1.1 Trend Shapes

simulated series Yt = g(t) + εt for different trend specifications

linear trend quadratic trend polynomial trend

β1 > 0 β2 > 0

β1 < 0 β2 < 0
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10.1.1 Trend Shapes

simulated series Yt = g(t) + εt for different trend specifications

exponential trend logistic trend logistic trend

β1 > 0 β0 = 1, β1 < 0, β2 = 10 β0 > 1, β1 < 0, β2 = 10

β1 < 0 β0 = 1, β1 > 0, β2 = 10 β0 < 1, β1 > 0, β2 = 10
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10.1.1 Trend Shapes
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10.1.2 Trend Stationarity

I consider a process with a deterministic trend, Yt = g(t) + εt, where εt is white
noise

I the unconditional mean is

µt = E(Yt) = E(g(t) + εt) = E(g(t)) + E(εt) = g(t)

I the unconditional variance is

γ0 = var(Yt) = E[(Yt − µt)2] = E[ε2
t ] = σ2

ε

I autocovariance of order k is

γk = E[(Yt − µt)(Yt−k − µt−k)] = E[εtεt−k] = 0

I autocorrelation of order k is
ρk =

γk

γ0
= 0
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10.1.2 Trend Stationarity

I thus the unconditional mean µt is time varying, but the unconditional variance is
not, and the auto-covariance and autocorrelation functions do not depend on time

I because the mean of a process Yt is not constant over time, it is not first order
weakly stationary process

I but because the variance and autocovariances satisfy the requirements for second
order weak stationarity, the detrended process, ỹt = yt−µt, that is, ỹt = yt− g(t),
is second order weakly stationary, and we say that yt is trend-stationary
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10.1.3 Optimal Forecast

I recall: under quadratic loss function the optimal forecast is the conditional mean
ft,h = µt+h|t = E(Yt+h|It) for h = 1, 2, . . . , s

I we next analyze this optimal forecast under quadratic loss function for h = 1, 2, . . .
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10.1.3 Optimal Forecast

if Yt = g(t) + εt where εt is white noise, for the forecasting horizon h = 1 we have

1. optimal point forecast

ft,1 = µt+1|t = E(Yt+1|It) = E(g(t+ 1) + εt+1|It) = g(t+ 1)

2. forecast error

et,1 = Yt+1 − ft,1 = g(t+ 1) + εt+1 − g(t+ 1) = εt+1

3. uncertainty associated with the forecast is summarized by the variance of the
forecast error

σ2
t+1|t = var(et,1|It) = var(εt+1) = σ2

ε

4. the density forecast is the conditional probability density function f(Yt+1|It),
assuming εt+1 is normally distributed white noise, we have

Yt+1|It ∼ N(g(t+ 1), σ2
ε)
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10.1.3 Optimal Forecast

I in general if Yt = g(t) + εt where εt is white noise, for the forecast at horizon
h = s we have

ft,s = g(t+ s)
et,s = εt+s

σ2
t+s|t = σ2

ε

Yt+s|It ∼ N(g(t+ s), σ2
ε)

I note that the uncertainty of the forecast is thus same regardless of the forecasting
horizon, because we assumed that εt is white noise

I in general, model with deterministic trend can accommodate linear dependence in
its stochastic component: instead of Yt = g(t) + εt where εt is white noise, we
then have Yt = g(t) + ut where ut follows some ARMA(p, q) model

18 / 32



Example: Earnings per Share of Johnson and Johnson

I time series plot shows that earnings per share of Johnson and Johnson grew
exponentially in the period from 1960Q1 to 1980Q4

I in addition, there is a seasonal pattern that will need to be incorporated into the
estimated model
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Example: Earnings per Share of Johnson and Johnson
I to build a model for forecasting, we start by generating time series for trend:

choose Object → Generate Series and enter t = @trend

I to estimate a model with exponential trend

JNJt = β0 + β1e
β2t + εt

choose Object → New Object → Equation, in the Equation specification box
enter JNJ = c(1) + c(2)*exp(c(3)*t) and in Sample 1960Q1 1978Q4
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Example: Earnings per Share of Johnson and Johnson

the plot with actual vs fitted data and the regression residuals, which can be obtained
by selecting View → Actual, Fitted, Residual → Actual, Fitted, Residual Graph
reveals two problems with the estimated model:
I it can match the trend, but not the seasonal pattern
I the variance of residuals does not appear to be constant, it is increasing over time
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Example: Earnings per Share of Johnson and Johnson

I to deal with issue of variance of residuals increasing over time we reestimate the
model using log transformed data

log JNJt = β0 + β1t+ εt

I note that this is equivalent to a multiplicative model JNJt = β̃0eβ1tε̃t where
β̃0 = eβ0 and ε̃t = eεt

I to estimate this model choose Object → New Object → Equation, in the
Equation specification box write log(JNJ) c t and in Sample 1960Q1 1978Q4
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Example: Earnings per Share of Johnson and Johnson

residuals shows that the variance is now roughly same over time, but the model still can
not match the seasonal pattern
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Example: Earnings per Share of Johnson and Johnson

I this finding is supported by the correlogram, obtained using View → Residual
Diagnostics → Correlogram - Q-statistics, which shows large significant
component of PACF at lag 4, and significant components of ACF at lags 4, 8, 12

I the residuals are thus not white noise
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Example: Earnings per Share of Johnson and Johnson
I we thus include the seasonal term in the specification of the innovation ut

log JNJt = β0 + β1t+ ut

ut = φ4ut−4 + εt

I to do this choose Object → New Object → Equation , in the Equation
specification box enter log(JNJ) c t sar(4) and in Sample 1960Q1 1978Q4
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Example: Earnings per Share of Johnson and Johnson

residuals no longer have any recognizable seasonal pattern
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Example: Earnings per Share of Johnson and Johnson

but the first lag in the ACF and PACF is significant, resulting in p-values for Ljung-Box
test that are lower than 0.05
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Example: Earnings per Share of Johnson and Johnson
I to fix this issue we include the first regular AR lag in the model, so that ut is now

given by a multiplicative AR(1)+SAR(1) specification
log JNJt = β0 + β1t+ ut

ut = φ1ut−1 + φ4ut−4 + φ1φ4ut−5 + εt

I to estimate this model choose Object → New Object → Equation, in the
Equation specification box enter log(JNJ) c t ar(1) sar(4) and in Sample
1960Q1 1978Q4
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Example: Earnings per Share of Johnson and Johnson

residuals do not show any systematic pattern
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Example: Earnings per Share of Johnson and Johnson

correlogram also suggests that the residuals are white noise
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Example: Earnings per Share of Johnson and Johnson

I to create h-quarter ahead forecasts for h = 1, 2, . . . , 12, so 1979Q1-1981Q4:
choose Forecast and set “Series to forecast” to “JNJ”“,”Method" to “Dynamic
forecast” and “Forecast sample” to “1979Q1 1981Q4”

I to create a sequence of 1-quarter ahead forecasts, from 1979Q1-1981Q4: choose
Forecast and set “Series to forecast” to “JNJ”“,”Method" to “Static forecast” and
“Forecast sample” to “1979Q1 1981Q4”
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Example: Earnings per Share of Johnson and Johnson

I sequence of 1-step ahead forecasts is more precise than the multistep forecast -
RMSE is 0.8480 for the former and 0.9913 for the latter

I confidence interval is narrower in the case of the 1-step ahead forecasts
I multistep forecast is not able to account for a change in the seasonal pattern,

1-step ahead forecasts are eventually able to do that though with a one year delay
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