Eco 4306 Economic and Business Forecasting

Chapter 9: Assessment of Forecasts and Combination of Forecasts
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Motivation

P> we discussed how to asses the models based on in-sample evaluation

P parameters of the model are statistically significant
P residuals should be white noise (no significant lags in correlograms for residuals)
P AIC and SIC should be low

» we will now focus on out-of-sample evaluation

P assess the forecasting ability of each model
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9.1 Optimal Forecast

P uncertainty is inherent in any forecast, forecaster will necessarily make forecast
errors which are costly

» forecaster would like to minimize the expected costs associated with the forecast
errors

» this leads to the concept optimal forecast associated with forecasters loss function

» we should thus also evaluate forecasts from competing models using forecaster's
loss function

» we will see how to combine forecasts from several models to achieve lower loss
than using a forecast from a single model
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9.1 Optimal Forecast

» suppose that the forecaster has a loss function

L(et,h) = L(yt+h - ft,h)

where f; 5, is the forecast at time ¢ of the random variable Y; 1, which has a
conditional probability density functionf(y.4p|It)

P the expected loss associated with potential forecast errors is

E(L(Yyt4n — ft,n)) = /L(yt+h — fe.0) F(WernlTe)dyeon

> optimal forecast is the forecast that minimizes the expected loss
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9.1.1 Symmetric and Asymmetric Loss Functions
under symmetric quadratic loss functions L(e; ;) = ae? h

P positive or negative errors of the same magnitude have identical costs

(e)

Y

<« Information set

» forecast is unbiased, mean forecast error is zero

E(et,n) = E(Yiqn — #t+h\t) = Utthlt = Httnjt =0
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9.1.1 Symmetric and Asymmetric Loss Functions
under asymmetric linex loss function L(e; ;) = exp(aes ) — aeyn — 1

P positive and negative errors of the same magnitude have different costs

> if Y4 is normally distributed, the optimal forecast is ft*,h = Pyne + %crirhlt
> if a < 0 forecaster wants to avoid negative errors, so the forecast is pushed down
to make ysyp > fi.n more likely; optimal forecast will be smaller than the
conditional mean and is thus biased, E(e; ) > 0
» opposite applies when a > 0: forecaster wants to avoid positive forecast errors,
forecast will be pushed above the conditional mean and is thus biased E(e; ;) < 0
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9.1.1 Symmetric and Asymmetric Loss Functions

» consider again the case of forecasting quarterly House Price Index in the San Diego
MSA from lec10slides.pdf

» when a mortgage bank is forecasting home prices, negative forecast errors could be
more damaging than positive forecast errors: when house prices go down, home
equity goes down and homeowners with large mortgages may find that the value of
the house is less than the amount of the mortgage, creating incentives to default

» thus the bank will prefer to act conservatively, and bias its forecast downward

P assume that the forecasters at the bank choose a Linex loss function with a = f%,
the optimal forecast is then constructed using

1
* o~ A2
feon = Begnpe = 1%t+nt
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http://myweb.ttu.edu/jduras/files/teaching/eco4306/lec10slides.pdf

9.1.2 Testing the Optimality of the Forecast

» to perform out of sample evaluation of model forecasts we start by spliting the
sample into prediction sample and estimation sample

» in practice, prediction sample should be no more than 10% of the sample
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9.2 Assessment of Forecasts

» suppose that we have constructed the sequence of h step ahead forecasts using
either fixed, recursive, or rolling scheme as discussed in lecO6slides.pdf

> we can use the out-of-sample forecast errors {e; 1, €411, €t42,hs---1€T—h,n} tO
calculate the sample mean loss L

» ranking the forecasts from different model by their sample average loss is a simple
and quick procedure to choose the best forecast
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http://myweb.ttu.edu/jduras/files/teaching/eco4306/lec06slides.pdf

9.2 Assessment of Forecasts

> consider the house price index for California 1975Q1-2007Q4, variable ghpca in
ghpca.wfl

» suppose that we want to build a model with estimation sample 1975Q1-2002Q4,
and leave 2003Q1-2007Q4 as prediction sample for forecast evaluation

> the correlogram for 1975Q1-2002Q4 shows that ACF declines gradually and PACF
has significant lag 1 and marginally significant lag 3

Date: 04/03/17 Time: 20:10
Sample: 1975Q1 200204
Included observations: 111

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

1 0855 0.855 83.377 0.000
2 0755 0.090 149.02 0.000
3 0707 0161 20715 0.000
' 4 0654 0.012 25731 0.000
! 5 0571 -0.105 29580 0.000
' 6 0499 -0.033 32565 0.000
' 7 0439 -0.028 34889 0.000
' 8 0408 0.088 36918 0.000
' 9 0336 -0.129 383.09 0.000
' 10 0249 -0.115 39078 0.000
' 11 0191 -0.018 39533 0.000
' 12 0151 0.008 39823 0.000
a 13 0058 -0.186 39866 0.000
|
'
'
'
'

L[]

14 -0.004 0.028 39866 0.000
15 -0.049 -0.028 39898 0.000
16 -0.078 0.026 39978 0.000
17 -0.150 -0.156 40280 0.000
18 -0.221 -0.082 409.40 0.000
19 -0.281 -0.090 42014 0.000
20 -0.293 0.063 43201 0.000
21 -0.335 -0.049 44764 0.000
22 -0.352 0.086 46509 0.000
23 -0348 0.022 48235 0.000
24 0357 -0097 50068 0.000

=

NERREER
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https://ttu.blackboard.com/bbcswebdav/pid-4015596-dt-content-rid-53959948_1/xid-53959948_1

9.2 Assessment of Forecasts

> we thus estimate an AR(3) model

Yyt = Cc+ P1yt—1 + ¢3yt—3 + €t

Dependent Yariable: GHPCA

Method: ARMA Maximum Likelihood (BFGS)

Date: 04/0317 Time: 20:.05
Sample: 197502 200204
Included observations: 111

Convergence achieved after 8 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error 1-Stalistic Prob.
cC 2211330 0.927358 2384549 0.0189
AR(1) 0.733166 0.068178 10.75367 0.0000
AR(3) 0.155077 0.074522 2.080945 0.0398
SIGMASQ 1.098276 0.124433 8.826219 0.0000
R-squared 0.744947 Mean dependentvar 2.016012
Adjusted R-squared 0737796 SD. dependentvar 2084519
S.E. of regression 1.067396 Akaike info criterion 3.016160
Sum squared resid 121.9087 Schwarz criterion 3113801
Log likelihood -163.3969 Hannan-Quinn criter. 3.055770
F-statistic 104.1737  Durbin-Watson stat 1959416
Prob(F-statistic) 0.000000
Inverted AR Roots 92 ~09+.40i -.00-.40i
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9.2 Assessment of Forecasts

> we will now use the estimated AR(3) to obtain one step ahead fixed scheme
forecasts fy 1, ft+1,1, ft+2,1,- .-, fr—1,1 for the prediction sample
2003Q1-2007Q4

» to do it in EViews click on Proc — Forecast and choose “Static forecast” for

“Method"" option, enter ghpca_f_ar3_fix in the “Forecast name”, and
2003Q1-2007Q4 in “Forecast sample”

P next, construct the forecast errors by subtracting the forecast from the actual
series: €441 = Yt+j+1 — ft4j1 for j=0,1,..., T —t -1

> to do this in EViews choose Object — Generate series and enter
ghpca_e_ar3_fix = ghpca - ghpca_f_ar3_fix
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9.2 Assessment of Forecasts

> we will compare the forecast from the AR(3) model for the 2003Q1-2007Q4 period
with two alternative forecasts
1. a naive forecast, constructed by choosing Object — Generate series and entering
ghpca_f_naive = ghpca(-1)
2. a four quarter simple moving average forecast, obtained by Object — Generate series
and entering ghpca_f_ma = 1/4*( ghpca(-1)+ghpca(-2)+ghpca(-3)+ghpca(-4) )
> for these alternative forecasts we calculate the forecast errors

1. for naive forecast we generate ghpca_e_naive = ghpca - ghpca_f_naive
2. for simple moving average forecast we generate ghpca_e_ma = ghpca - ghpca_f_ma
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9.2 Assessment of Forecasts

precision of a forecast should be assessed based on a measure consistent with the choice
of the loss function

Mean Squared Error

T—h—t

1 2
MSE = D e
§=0

is the sample average loss corresponding to a symmetric quadratic loss function; it is
customary to report the root mean squared error RMSE = MSE

Mean Absolute Error

T—h—t

1
MAE= ———— :
T—t—h+1 le+.n]
=0

is the sample average loss corresponding to a symmetric absolute value loss function
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9.2 Assessment of Forecasts

precision of a forecast should be assessed based on a measure consistent with the choice
of the loss function

Mean Absolute Percentage Error

L T—h—t
MAPE = ————— Y | St
T—-t—h+1 £ Yttrjt+h
j=0
is the sample average loss corresponding to a loss function L(e,y) = %
Mean Loss
T—1—t
z S O Mewin)
e ert
T—t—h+1 i
=0
for example with linex loss function
1 T—1—t
L=—— exp(aesy —aeprip—1
rr— g (exp(aestjn) —aeopjn —1)
=0
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9.2 Assessment of Forecasts

P to obtain MSE for the forecasts, we first need to generate the series for the
squared forecast errors (these also measure the loss in each period given symmetric
quadratic loss function)

> for the one quarter ahead fixed scheme forecast from the AR(3) model choose
Object — Generate Series and enter ghpca_|_ar3_fix = ghpca_e_ar3_fix"2

> series ghpca_l_naive = ghpca_e_naive”2 and ghpca_l_ma = ghpca_e_ma“2
are constructed in EViews in a similar way
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9.2 Assessment of Forecasts

> then, to obtain MSE for these forecasts select all three series ghpca_l_ar3_fix,
ghpca_l_naive, ghpca_Il_ma, as group and choose View — Descriptive Stats —

Common Sample

» the numbers in the first row which show the mean of the squared errors are the

MSEs for the three forecasts

Date: 03/05/18 Time: 14:20
Sample: 2003Q1 200704

GHPCA_L_AR3_FIX GHPCA_L_NAIVE GHPCA_L_MA

Mean 3.82086 4.399913 4.981485
Median 1.424206 1.216233 3.45836
Maximum 20.84603 37.51581 27.93979
Minimurn 0.016053 0.008369 0.003614
Std. Dev. 5.817161 8.755445 6.311292
Skewness 2.090813 3.039272 2.516509
Kurtosis 6.219916 11.62986 9.868731
Jarque-Bera 23.21155 92.85265 60.4256
Probability 0.000009 o o

Sum 76.4172 87.99826 99.62971
Sum Sg. Dewv. 642.948 1456.499 756.8156
Observations 20 20 20
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9.2.2 Statistical Evaluation of the Average Loss

> the comparison of the three forecasts shows that in this case AR(3) is most precise
since its MSE is the lowest, and the simple moving average is least precise since its
MSE is the highest

» in general, when we have several competing forecasts, the preferred one is the
forecast that has the lowest average loss, based on either MSE, MAE, MAPE or
some general mean loss

» however, since in practice we work with sample information, so we need to consider
sampling variation in our assessment of forecasts

P this means that we need to test whether the calculated difference in sample mean
loss of any two competing forecasts is statistically significant or not

» in other words, it is possible that in our example the 3.8208 MSE of the forecast
from the AR(3) model is not statistically lower than the 4.3999 MSE from the
naive forecast
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9.2.2.1 Test of Equal Predictive Ability

> hypothesis of equal predictive ability of forecasts from two models A and B is
written in terms of the unconditional expectation of the loss difference

Ho : B(L(e{}))) — B(L(e{}))) = E(AL¢p) =0

P the test of this hypothesis can be easily carried out by estimaing a simple
regression model

ALt+j,h:ﬁO+5t+j forj=0,1,2,..., T —t—h

P if both forecasts deliver the same expected loss, coefficient 3 is zero

» this means that the hypothesis of equal predictive ability of two forecasts A and B
can be restated as
Ho:B0=0

» consequently, if 8o is statistically significant we reject the hypothesis of equal
predictive ability of forecasts A and B
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9.2.2.1 Test of Equal Predictive Ability

» to perform the test of equal predictive ability that compares the naive and fixed
scheme forecast generated by the AR(3) model we need to generate series for loss
differential

» we do so by choosing Object — Generate Series and entering
di_naive = ghpca_I_naive - ghpca_l_ar3_fix

» then we estimate the OLS model
ALt+j,h:60+€t+j forj:O,l,Q,...,T—t—h

by choosing Object — New Object — Equation and entering
dl_naive c in the specification dialog
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9.2.2.1 Test of Equal Predictive Ability

P the results of the estimation below show that Sy is not statistically significant - its

p-value is 0.5263 so larger than 0.1

» thus in this case we can not reject the null hypothesis of the equal predictive ability
of AR(3) model and the naive forecast

Dependent Variable: DL_MAIVE

Method: Least Squares

Date: 04/0317 Time: 20:05

Sample: 2003Q1 200704
Included observations: 20

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed

bandwidth = 3.0000)

Variable Coeflicient Std. Error t-Statistic Prob.
c 0.579053 0.897018 0.645531 0.5263
R-squared 0.000000 Mean dependentvar 0.578053
Adjusted R-squared 0.000000 S.D. dependent var 4 642825
S.E. ofregression 4 642825 Akaike info criterion 5.957230
Sum squared resid 409.5606 Schwarz criterion G.007016
Log likelihood -58.57230 Hannan-Quinn criter. 5.966949
Durbin-Watson stat 2342480
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9.3 Combination of Forecasts

» often we may not able to find a unique model that produces best forecast all the
time

P some models may work better in high volatility times than in calmer times

P some models may adjust faster than others to regime changes caused by new policies
P best model can change over the time span of the series

P different models and forecasts may be based on different information sets

P a combination of forecasts can thus often do better than any individual forecast
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9.3.1 Simple Linear Combinations

> suppose that we have n forecasts {f t(lh)’ ft(Qh)7 ..
1 (2 ()
t,h’et,h""’ th}

. t(f;l)} with their corresponding
forecast errors {e

P a linear combination of forecasts is given by
fon =wr )+ w2f<2) ot

where w; is the weight assigned to forecast ft(zf)b
» note: weights do not need to add to 1 or be strictly positive

> example 1: when the weights are w; = 1/n, we have an equal-weighted forecast
that is the arithmetic average of the individual forecasts

P example 2: forecaster may wish to weight forecasts so that those with a lower MSE
are assigned a larger weight than those with larger MSE by setting

Wi = —mt———t— where M SE; is the mean squared error of forecast i
> 1/MSE;
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9.3.2 Optimal Linear Combinations

P> example 3: it is also possible to estimate the weights by regressing the realized
values on the individual forecasts

Yt+n = wo + w1ft(71h) + OJth(?h) +...+ UJnf,g(? +ettn

» using OLS we can obtain estimates for w;, which may be positive or negative and
may not total 1

» if the individual forecasts are unbiased, the constant in the regression will be zero,
ie., wo=0

» if the the forecasts are not unbiased, the constant will pick up the bias assuming
that this is not time-varying
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