
Eco 4306 Economic and Business Forecasting
Chapter 9: Assessment of Forecasts and Combination of Forecasts
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Motivation

I we discussed how to asses the models based on in-sample evaluation
I parameters of the model are statistically significant
I residuals should be white noise (no significant lags in correlograms for residuals)
I AIC and SIC should be low

I we will now focus on out-of-sample evaluation
I assess the forecasting ability of each model
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9.1 Optimal Forecast

I uncertainty is inherent in any forecast, forecaster will necessarily make forecast
errors which are costly

I forecaster would like to minimize the expected costs associated with the forecast
errors

I this leads to the concept optimal forecast associated with forecasters loss function
I we should thus also evaluate forecasts from competing models using forecaster’s

loss function
I we will see how to combine forecasts from several models to achieve lower loss

than using a forecast from a single model
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9.1 Optimal Forecast

I suppose that the forecaster has a loss function

L(et,h) = L(yt+h − ft,h)

where ft,h is the forecast at time t of the random variable Yt+h, which has a
conditional probability density functionf(yt+h|It)

I the expected loss associated with potential forecast errors is

E(L(yt+h − ft,h)) =
∫

L(yt+h − ft,h)f(yt+h|It)dyt+h

I optimal forecast is the forecast that minimizes the expected loss
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9.1.1 Symmetric and Asymmetric Loss Functions
under symmetric quadratic loss functions L(et,h) = ae2

t,h

I positive or negative errors of the same magnitude have identical costs

I the optimal forecast is the conditional mean f∗t,h = µt+h|t

I forecast is unbiased, mean forecast error is zero

E(et,h) = E(Yt+h − µt+h|t) = µt+h|t − µt+h|t = 0
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9.1.1 Symmetric and Asymmetric Loss Functions
under asymmetric linex loss function L(et,h) = exp(aet,h)− aet,h − 1

I positive and negative errors of the same magnitude have different costs

I if Yt+h is normally distributed, the optimal forecast is f∗t,h = µt+h|t + a
2σ

2
t+h|t

I if a < 0 forecaster wants to avoid negative errors, so the forecast is pushed down
to make yt+h > ft,h more likely; optimal forecast will be smaller than the
conditional mean and is thus biased, E(et,h) > 0

I opposite applies when a > 0: forecaster wants to avoid positive forecast errors,
forecast will be pushed above the conditional mean and is thus biased E(et,h) < 0
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9.1.1 Symmetric and Asymmetric Loss Functions

I consider again the case of forecasting quarterly House Price Index in the San Diego
MSA from lec10slides.pdf

I when a mortgage bank is forecasting home prices, negative forecast errors could be
more damaging than positive forecast errors: when house prices go down, home
equity goes down and homeowners with large mortgages may find that the value of
the house is less than the amount of the mortgage, creating incentives to default

I thus the bank will prefer to act conservatively, and bias its forecast downward
I assume that the forecasters at the bank choose a Linex loss function with a = − 1

2 ,
the optimal forecast is then constructed using

f∗t,h = µ̂t+h|t −
1
4
σ̂2

t+h|t
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http://myweb.ttu.edu/jduras/files/teaching/eco4306/lec10slides.pdf


9.1.2 Testing the Optimality of the Forecast

I to perform out of sample evaluation of model forecasts we start by spliting the
sample into prediction sample and estimation sample

I in practice, prediction sample should be no more than 10% of the sample
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9.2 Assessment of Forecasts

I suppose that we have constructed the sequence of h step ahead forecasts using
either fixed, recursive, or rolling scheme as discussed in lec06slides.pdf

I we can use the out-of-sample forecast errors {et,h, et+1,h, et+2,h, . . . , eT−h,h} to
calculate the sample mean loss L̄

I ranking the forecasts from different model by their sample average loss is a simple
and quick procedure to choose the best forecast
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http://myweb.ttu.edu/jduras/files/teaching/eco4306/lec06slides.pdf


9.2 Assessment of Forecasts

I consider the house price index for California 1975Q1-2007Q4, variable ghpca in
ghpca.wf1

I suppose that we want to build a model with estimation sample 1975Q1-2002Q4,
and leave 2003Q1-2007Q4 as prediction sample for forecast evaluation

I the correlogram for 1975Q1-2002Q4 shows that ACF declines gradually and PACF
has significant lag 1 and marginally significant lag 3
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https://ttu.blackboard.com/bbcswebdav/pid-4015596-dt-content-rid-53959948_1/xid-53959948_1


9.2 Assessment of Forecasts

I we thus estimate an AR(3) model

yt = c+ φ1yt−1 + φ3yt−3 + εt
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9.2 Assessment of Forecasts

I we will now use the estimated AR(3) to obtain one step ahead fixed scheme
forecasts ft,1, ft+1,1, ft+2,1, . . . , fT−1,1 for the prediction sample
2003Q1-2007Q4

I to do it in EViews click on Proc → Forecast and choose “Static forecast” for
“Method”" option, enter ghpca_f_ar3_fix in the “Forecast name”, and
2003Q1-2007Q4 in “Forecast sample”

I next, construct the forecast errors by subtracting the forecast from the actual
series: et+j,1 = yt+j+1 − ft+j,1 for j = 0, 1, . . . , T − t− 1

I to do this in EViews choose Object → Generate series and enter
ghpca_e_ar3_fix = ghpca - ghpca_f_ar3_fix
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9.2 Assessment of Forecasts

I we will compare the forecast from the AR(3) model for the 2003Q1-2007Q4 period
with two alternative forecasts
1. a naive forecast, constructed by choosing Object → Generate series and entering

ghpca_f_naive = ghpca(-1)
2. a four quarter simple moving average forecast, obtained by Object → Generate series

and entering ghpca_f_ma = 1/4*( ghpca(-1)+ghpca(-2)+ghpca(-3)+ghpca(-4) )

I for these alternative forecasts we calculate the forecast errors
1. for naive forecast we generate ghpca_e_naive = ghpca - ghpca_f_naive
2. for simple moving average forecast we generate ghpca_e_ma = ghpca - ghpca_f_ma
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9.2 Assessment of Forecasts

precision of a forecast should be assessed based on a measure consistent with the choice
of the loss function

Mean Squared Error

MSE =
1

T − t− h+ 1

T−h−t∑
j=0

e2
t+j,h

is the sample average loss corresponding to a symmetric quadratic loss function; it is
customary to report the root mean squared error RMSE =

√
MSE

Mean Absolute Error

MAE =
1

T − t− h+ 1

T−h−t∑
j=0

|et+j,h|

is the sample average loss corresponding to a symmetric absolute value loss function
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9.2 Assessment of Forecasts

precision of a forecast should be assessed based on a measure consistent with the choice
of the loss function

Mean Absolute Percentage Error

MAPE =
1

T − t− h+ 1

T−h−t∑
j=0

∣∣∣ et+j,h

yt+j+h

∣∣∣
is the sample average loss corresponding to a loss function L(e, y) = |e|

y

Mean Loss

L̄ =
1

T − t− h+ 1

T−l−t∑
j=0

L(et+j,h)

for example with linex loss function

L̄ =
1

T − t− h+ 1

T−l−t∑
j=0

(
exp(aet+j,h)− aet+j,h − 1

)
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9.2 Assessment of Forecasts

I to obtain MSE for the forecasts, we first need to generate the series for the
squared forecast errors (these also measure the loss in each period given symmetric
quadratic loss function)

I for the one quarter ahead fixed scheme forecast from the AR(3) model choose
Object → Generate Series and enter ghpca_l_ar3_fix = ghpca_e_ar3_fixˆ2

I series ghpca_l_naive = ghpca_e_naiveˆ2 and ghpca_l_ma = ghpca_e_maˆ2
are constructed in EViews in a similar way
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9.2 Assessment of Forecasts

I then, to obtain MSE for these forecasts select all three series ghpca_l_ar3_fix,
ghpca_l_naive, ghpca_l_ma, as group and choose View → Descriptive Stats →
Common Sample

I the numbers in the first row which show the mean of the squared errors are the
MSEs for the three forecasts
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9.2.2 Statistical Evaluation of the Average Loss

I the comparison of the three forecasts shows that in this case AR(3) is most precise
since its MSE is the lowest, and the simple moving average is least precise since its
MSE is the highest

I in general, when we have several competing forecasts, the preferred one is the
forecast that has the lowest average loss, based on either MSE, MAE, MAPE or
some general mean loss

I however, since in practice we work with sample information, so we need to consider
sampling variation in our assessment of forecasts

I this means that we need to test whether the calculated difference in sample mean
loss of any two competing forecasts is statistically significant or not

I in other words, it is possible that in our example the 3.8208 MSE of the forecast
from the AR(3) model is not statistically lower than the 4.3999 MSE from the
naive forecast
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9.2.2.1 Test of Equal Predictive Ability

I hypothesis of equal predictive ability of forecasts from two models A and B is
written in terms of the unconditional expectation of the loss difference

H0 : E(L(e(A)
t,h

))− E(L(e(B)
t,h

)) = E(∆Lt,h) = 0

I the test of this hypothesis can be easily carried out by estimaing a simple
regression model

∆Lt+j,h = β0 + εt+j for j = 0, 1, 2, . . . , T − t− h

I if both forecasts deliver the same expected loss, coefficient β is zero
I this means that the hypothesis of equal predictive ability of two forecasts A and B

can be restated as
H0 : β0 = 0

I consequently, if β0 is statistically significant we reject the hypothesis of equal
predictive ability of forecasts A and B
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9.2.2.1 Test of Equal Predictive Ability

I to perform the test of equal predictive ability that compares the naive and fixed
scheme forecast generated by the AR(3) model we need to generate series for loss
differential

I we do so by choosing Object → Generate Series and entering
dl_naive = ghpca_l_naive - ghpca_l_ar3_fix

I then we estimate the OLS model

∆Lt+j,h = β0 + εt+j for j = 0, 1, 2, . . . , T − t− h

by choosing Object → New Object → Equation and entering
dl_naive c in the specification dialog
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9.2.2.1 Test of Equal Predictive Ability

I the results of the estimation below show that β0 is not statistically significant - its
p-value is 0.5263 so larger than 0.1

I thus in this case we can not reject the null hypothesis of the equal predictive ability
of AR(3) model and the naive forecast
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9.3 Combination of Forecasts

I often we may not able to find a unique model that produces best forecast all the
time
I some models may work better in high volatility times than in calmer times
I some models may adjust faster than others to regime changes caused by new policies
I best model can change over the time span of the series
I different models and forecasts may be based on different information sets

I a combination of forecasts can thus often do better than any individual forecast
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9.3.1 Simple Linear Combinations

I suppose that we have n forecasts {f (1)
t,h
, f

(2)
t,h
, . . . , f

(n)
t,h
} with their corresponding

forecast errors {e(1)
t,h
, e

(2)
t,h
, . . . , e

(n)
t,h
}

I a linear combination of forecasts is given by

fc
t,h = ω1f

(1)
t,h

+ ω2f
(2)
t,h

+ . . .+ ωnf
(n)
t,h

where ωi is the weight assigned to forecast f (i)
t,h

I note: weights do not need to add to 1 or be strictly positive
I example 1: when the weights are ωi = 1/n, we have an equal-weighted forecast

that is the arithmetic average of the individual forecasts
I example 2: forecaster may wish to weight forecasts so that those with a lower MSE

are assigned a larger weight than those with larger MSE by setting
ωi = 1/MSEi∑n

j=1
1/MSEj

where MSEi is the mean squared error of forecast i
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9.3.2 Optimal Linear Combinations

I example 3: it is also possible to estimate the weights by regressing the realized
values on the individual forecasts

yt+h = ω0 + ω1f
(1)
t,h

+ ω2f
(2)
t,h

+ . . .+ ωnf
(n)
t,h

+ εt+h

I using OLS we can obtain estimates for ωi, which may be positive or negative and
may not total 1

I if the individual forecasts are unbiased, the constant in the regression will be zero,
i.e., ω0 = 0

I if the the forecasts are not unbiased, the constant will pick up the bias assuming
that this is not time-varying
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