Eco 4306 Economic and Business Forecasting Chapter 7: Seasonal Cycles

Motivation

- \triangleright production, consumption, and other economic activities are generally organized according to the calendar (quarters, months, days, hours, and special holidays)
- \triangleright these actions appear in the data as a seasonal cycle at the quarterly, monthly, daily, or hourly frequency
- \blacktriangleright examples
	- \blacktriangleright retail sales: high in November and December
	- \blacktriangleright travel industry: people travel more in the summer, number of passengers traveling by air, train, car, and boat substantially increases, expenditures for gas are highest in summer
	- \triangleright construction: start of residential units occurs in the beginning of spring
	- **In** food industry: sales of liquor and alcohol tend to increase in the winter months, sales of ice cream in the summer months
	- \blacktriangleright entertainment industry: sales of tickets are higher on weekends than on weekdays
	- In stock market: the volume of trading is larger at the beginning and at the end of the trading day
- **Exercise is easonal cycle:** periodic fluctuation in the data associated with the calendar

Motivation

- \triangleright in many economic databases, we find seasonally adjusted time series for which the seasonal cycle has been removed
- \blacktriangleright macrolevel: policy makers, institutions, and economic forecasters in general are more concerned with the analysis of trends
- Inicrolevel: businesses generally are very much interested in forecasting sales every month or every quarter; thus, they need the joint analysis of the seasonal and nonseasonal components in sales

- \triangleright we will distinguish deterministic seasonality and stochastic seasonality
- \triangleright deterministic seasonality: captured in a regression model by assigning specific constant effects to each month or quarter
- \triangleright stochastic seasonality: MA and AR specifications have natural extensions to model the seasonal component of a series, size of the seasonal effect is no longer constant

7.3.1 Deterministic and Stochastic Seasonal Cycles **deterministic seasonality**

- **If** suppose that we collect a quarterly time series $\{y_t\}$, e.g. retail sales, and wish to analyze the seasonal component
- \triangleright construct four time series dummy variables Q_1 , Q_2 , Q_3 , Q_4 so that Q_i will assign a value 1 to the quarter *i* and 0 otherwise

 \blacktriangleright estimate regression

$$
Y_t = \beta_1 Q 1_t + \beta_2 Q 2_t + \beta_3 Q 3_t + \beta_4 Q 4_t + \varepsilon_t
$$

- \triangleright note that we are not including constant in the regression, that would lead to multicolinearity since $Q1_t + Q2_t + Q3_t + Q4_t = 1$
- \triangleright β_i is interpreted as expected (average) sales in quarter *i*

deterministic seasonality

stochastic seasonality

- \triangleright seasonal component is driven by random variables
- \triangleright for example: consider quarterly seasonal AR(1) model

$$
Y_t = c + \Phi Y_{t-4} + \varepsilon_t
$$

or equivalently using lag operator

$$
(1 - \Phi L^4)Y_t = c + \varepsilon_t
$$

stochastic seasonality

 \blacktriangleright seasonal AR of order P, so an S-AR(P), is defined as

$$
Y_t = c + \Phi_s Y_{t-s} + \Phi_{2s} Y_{t-2s} + \ldots + \Phi_{Ps} Y_{t-Ps} + \varepsilon_t
$$

where *s* refers to the frequency of the data

 \blacktriangleright using lag operator we can equivalently write S-AR(P) as

$$
(1 - \Phi_s L^s - \Phi_{2s} L^{2s} - \ldots - \Phi_{Ps} L_{Ps}) Y_t = c + \varepsilon_t
$$

- If we have quarterly data $s = 4$, for monthly data $s = 12$, for daily data, with five working days $s = 5$
- \triangleright for example, an S-AR(1) for quarterly data is written as

$$
Y_t = c + \Phi_4 Y_{t-4} + \varepsilon_t
$$

and an S-AR(2) for monthly data as

$$
Y_t = c + \Phi_{12} Y_{t-12} + \Phi_{24} Y_{t-24} + \varepsilon_t
$$

 \triangleright S-AR(1) and S-AR(2) for quarterly data and their AC and PAC functions

 \triangleright stochastic seasonality can also be specified within MA models

 \blacktriangleright a seasonal MA of order Q, S-MA(q) is defined as

$$
Y_t = \mu + \varepsilon_t + \Theta_s \varepsilon_{t-s} + \Theta_{2s} \varepsilon_{t-2s} + \ldots + \Theta_{Qs} \varepsilon_{t-Qs}
$$

 \blacktriangleright using lag operator we can equivalently write S-AR(P) as

$$
Y_t = \mu + (1 - \Theta_s L^s - \Theta_{2s} L^{2s} - \ldots - \Theta_{Qs} L_{Qs}) \varepsilon_t
$$

 \triangleright for example, an S-MA(1) for quarterly data is written as

$$
Y_t = \mu + \varepsilon_t + \Theta_4 \varepsilon_{t-4}
$$

and an S-MA(2) for monthly data as

$$
Y_t = \mu + \varepsilon_t + \Theta_{12}\varepsilon_{t-12} + \Theta_{24}\varepsilon_{t-24}
$$

 \triangleright S-MA(1) and S-MA(2) for quarterly data and their AC and PAC functions

- \triangleright AC and PAC functions of seasonal AR and MA models have similar characteristics as those of the non-seasonal AR and MA models, just occurring at multiples of *s*
- \triangleright point forecast, forecast error, forecast uncertainty, and density forecast, can be also obtained in a similar way

• Monthly Clothing Sales in the United States, January 2003-January 2011, [Figure07_17_clothingsales.xls](http://myweb.ttu.edu/jduras/files/teaching/eco4306/Figure07_17_clothingsales.xls)

PAC

0.077

 0.026

35 -0.038 -0.011

36 0.536 -0.119

τĹ o all

 \triangleright seasonal component may also be a mixture of AR and MA dynamics - we define a general S-ARMA(*P, Q*) as

 $Y_t = c + \Phi_s Y_{t-s} + \Phi_{2s} Y_{t-2s} + \ldots + \Phi_{Ps} Y_{t-Ps} + \varepsilon_t + \Theta_s \varepsilon_{t-s} + \Theta_{2s} \varepsilon_{t-2s} + \ldots + \Theta_{Os} \varepsilon_{t-Os}$

 \blacktriangleright equivalently, using lag operator, we can write S-ARMA(P, Q) as

 $(1-\Phi_s L^s - \Phi_{2s} L^{2s} - \ldots - \Phi_{Ps} L^{Ps})Y_t = c + (1-\Theta_s L^s - \Theta_{2s} L^{2s} - \ldots - \Theta_{Ns} L^{Qs})\varepsilon_t$

- \blacktriangleright in practice, time series combine seasonal and nonseasonal components
- \blacktriangleright a very common modeling practice is to assume that both cycles interact with each other in a multiplicative fashion
- \triangleright example: suppose that we have a quarterly time series and there are a seasonal cycle $S-AR(2)$ and a nonseasonal cycle $AR(1)$, the multiplicative model is written using lag operator as

$$
(1 - \Phi_4 L^4 - \Phi_8 L^8)(1 - \phi_1 L)Y_t = c + \varepsilon_t
$$

 \triangleright example: suppose that we have a quarterly time series and there are a seasonal cycle S-ARMA(1,2) and a nonseasonal cycle ARMA(2,1), the multiplicative model is written using lag operator as

$$
(1 - \Phi_4 L^4)(1 - \phi_1 L - \phi_2 L^2)Y_t = c + (1 - \Theta_4 L^4 - \Theta_8 L^8)(1 - \theta_1 L)\varepsilon_t
$$

 \triangleright in the multiplicative models the seasonal polynomials multiply the nonseasonal polynomials

In Monthly Changes in U.S. Residential Construction, January 2002-January 2011, [Figure07_19_constructionchanges.xls](http://myweb.ttu.edu/jduras/files/teaching/eco4306/Figure07_19_constructionchanges.xls)

▶ Monthly Changes in U.S. Residential Construction, January 2002-January 2011

 \triangleright based on AC and PAC we choose to estimate $AR(1) + S-AR(1)$ Model

$$
(1 - \Phi_{12}L^{12})(1 - \phi_1L)Y_t = c + \varepsilon_t
$$

 \triangleright note that this is equivalent to an AR(13) specification

$$
(1 - \phi_1 L - \Phi_{12} L^{12} - \phi_1 \Phi_{12} L^{13}) Y_t = c + \varepsilon_t
$$

▶ in EViews in specification box enter **const c ar(1) sar(12)**

TABLE 7.3 Monthly Changes in Residential Construction. Estimation Results of AR(1) and S-AR(1) Model

Dependent Variable: change CONST Method: Least Squares Sample (adjusted): 2003M03 2011M01 Included observations: 95 after adjustments Convergence achieved after 6 iterations				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-593.2408	2399.622	-0.247223	0.8053
AR(1)	0.439971	0.093551	4.703012	0.0000
SAR(12)	0.923569	0.038771	23.82102	0.0000
R-squared	0.894790	Mean dependent var		-128.3158
Adjusted R-squared	0.892502	S.D. dependent var		3036.076
S.E. of regression	995.4326	Akaike info criterion		16.67530
Sum squared resid	91161518	Schwarz criterion		16.75595
Log likelihood	-789.0768	F-statistic		391.2194
Durbin-Watson stat	2.115719	Prob(F-statistic)		0.000000

- ▶ Monthly Changes in U.S. Residential Construction, January 2002-January 2011
- \triangleright multistep forecast from February 2011 to January 2012 with 95% confidence bands

