Eco 4306 Economic and Business Forecasting
Chapter 7: Seasonal Cycles
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Motivation

» production, consumption, and other economic activities are generally organized
according to the calendar (quarters, months, days, hours, and special holidays)

P these actions appear in the data as a seasonal cycle at the quarterly, monthly, daily,
or hourly frequency

P> examples

>
>

>
>

>
>

retail sales: high in November and December

travel industry: people travel more in the summer, number of passengers traveling by air,
train, car, and boat substantially increases, expenditures for gas are highest in summer
construction: start of residential units occurs in the beginning of spring

food industry: sales of liquor and alcohol tend to increase in the winter months, sales of
ice cream in the summer months

entertainment industry: sales of tickets are higher on weekends than on weekdays

stock market: the volume of trading is larger at the beginning and at the end of the
trading day

> seasonal cycle: periodic fluctuation in the data associated with the calendar
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Motivation

»

>

in many economic databases, we find seasonally adjusted time series for which the
seasonal cycle has been removed

macrolevel: policy makers, institutions, and economic forecasters in general are
more concerned with the analysis of trends

microlevel: businesses generally are very much interested in forecasting sales every
month or every quarter; thus, they need the joint analysis of the seasonal and
nonseasonal components in sales
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7.3.1 Deterministic and Stochastic Seasonal Cycles

> we will distinguish deterministic seasonality and stochastic seasonality

P deterministic seasonality: captured in a regression model by assigning specific
constant effects to each month or quarter

P stochastic seasonality: MA and AR specifications have natural extensions to model
the seasonal component of a series, size of the seasonal effect is no longer constant
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7.3.1 Deterministic and Stochastic Seasonal Cycles
deterministic seasonality

> suppose that we collect a quarterly time series {y;}, e.g. retail sales, and wish to
analyze the seasonal component

» construct four time series dummy variables Q1, Q2, Q3, Q4 so that Qi will assign a
value 1 to the quarter i and 0 otherwise

abs | SALES (5) Q1 2 Q3 Q4
1999Q4 | 7687260 | 0.000000 | 0.000000 | 0.000000 | 1000000
200001 | 6950480 | 1.000000 | 0.000000 | 0.000000 | 0.000000
200002 | 7532110 | 0.000000 | L0O0DDOO | 0.000000 | 0.000000
200003 | 7468750 | 0.000000 | 0000000 | 1000000 | 0.000000
2000Q4 | 7926220 | 0.000000 | 0000000 | 0.000000 | 1.000000
2001Q1 | 7047570 | 1000000 | 0.000000 | 0.000000 | 0.000000
2001Q2 | 7790110 | 0.000000 | L0O0DOOD | 0000000 | 0.000000
2001Q3 | 7561280 | 0.000000 | 0000000 | 1000000 | 0.000000
2001Q4 | 8278200 | 0.000000 | 0000000 | 0000000 | 1.000000
200201 | 7173020 | 1.000000 | 0.000000 | 0.000000 | 0.000000
200202 | 7904860 | 0.000000 | 100000 | 0.000000 | 0.000000
2002Q3 792657.0 0000000 0.000000 1,000000 0.000000
2002Q4 | §33877.0 | 0.000000 | 0000000 | 0.000000 | 1.000000
2003Q1 | 7412330 | 1.000000 | 0000000 | 0000000 | 0.000000
200302 | 8199400 | 0.000000 | L0O0DOOO | 0.000000 | 0.000000

P estimate regression

Y: = B1Q1t + B2Q2¢ + B3Q3¢ + BaQ4st + &t
P> note that we are not including constant in the regression, that would lead to
multicolinearity since Q1 + Q2¢ + Q3+ + Q4 = 1

> 3, is interpreted as expected (average) sales in quarter 4
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7.3.1 Deterministic and Stochastic Seasonal Cycles

deterministic seasonality
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7.3.1 Deterministic and Stochastic Seasonal Cycles

stochastic seasonality
P seasonal component is driven by random variables

> for example: consider quarterly seasonal AR(1) model
Yi=c+®Yi—s+e¢
or equivalently using lag operator

1—®LYYY: =c+es
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7.3.1 Deterministic and Stochastic Seasonal Cycles

stochastic seasonality

— Y=08"Y(-4)+e]
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7.3.2 Seasonal ARMA Models

> seasonal AR of order P, so an S-AR(P), is defined as
Yi=c+PsYi s+ PosYios+... +PpYi_ps + et

where s refers to the frequency of the data

> using lag operator we can equivalently write S-AR(P) as

(1= ®L° — P, L?° — ... —®pyLp,)Yi =c+et

> if we have quarterly data s = 4, for monthly data s = 12, for daily data, with five
working days s = 5

> for example, an S-AR(1) for quarterly data is written as
Yi=c+ P4V 4+ et
and an S-AR(2) for monthly data as

Yi =c+ P12Yi—12 + PosYi 24 + &t
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7.3.2 Seasonal

ARMA Models

»> S-AR(1) and S-AR(2) for quarterly data

3

and their AC and PAC functions
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7.3.2 Seasonal ARMA Models

P stochastic seasonality can also be specified within MA models

> a seasonal MA of order Q, S-MA(q) is defined as
Yi=p+et+0Oset—s +Oose¢_2s+ ...+ ergths
> using lag operator we can equivalently write S-AR(P) as

Yi = p4 (1 —OsL°% — 0oL — ... — OgsLgs)et

» for example, an S-MA(1) for quarterly data is written as
Yi =p+et +Ouera
and an S-MA(2) for monthly data as

Y =p+et+0O126t—12 + O246t-24
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7.3.2 Seasonal ARMA Models

> S-MA(1) and S-MA(2) for quarterly data and their AC and PAC functions
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7.3.2 Seasonal ARMA Models

» AC and PAC functions of seasonal AR and MA models have similar characteristics
as those of the non-seasonal AR and MA models, just occurring at multiples of s

» point forecast, forecast error, forecast uncertainty, and density forecast, can be also
obtained in a similar way
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7.3.2 Seasonal ARMA Models

» Monthly Clothing Sales in the United States, January 2003-January 2011,
Figure07_17_clothingsales.xls

Sample: 2003M01 2011MO1
Included observations: 97
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http://myweb.ttu.edu/jduras/files/teaching/eco4306/Figure07_17_clothingsales.xls

7.3.2 Seasonal ARMA Models

» seasonal component may also be a mixture of AR and MA dynamics - we define a
general SSARMA(P, Q) as

Yi = c+PsYi s+ PosYios+. . +Pps Yy pstet+Oset—s+O2s6t—25+. . -+®Q55t7Qs

> equivalently, using lag operator, we can write SSARMA(P, Q) as

(1=®s L°—Bos L2 —. . . —Bp LTV, = cH(1-OsL°—O2s L2°—. . . —O g, L9%)e;
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7.3.2 Seasonal ARMA Models

P in practice, time series combine seasonal and nonseasonal components

P> a very common modeling practice is to assume that both cycles interact with each
other in a multiplicative fashion

P example: suppose that we have a quarterly time series and there are a seasonal
cycle S-AR(2) and a nonseasonal cycle AR(1), the multiplicative model is written
using lag operator as

(1 —®4L* — B LB)(1 — $p1 L)Y = c+er
P> example: suppose that we have a quarterly time series and there are a seasonal

cycle SS-ARMA(1,2) and a nonseasonal cycle ARMA(2,1), the multiplicative model
is written using lag operator as

(1 =4 L1 — p1L — p2L?)Yi = c+ (1 — O4L* — O3 L3)(1 — 01 L)y

» in the multiplicative models the seasonal polynomials multiply the nonseasonal
polynomials
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7.3.2 Seasonal ARMA Models

» Monthly Changes in U.S. Residential Construction, January 2002-January 2011,

Figure07_19_ constructionchanges.xls
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http://myweb.ttu.edu/jduras/files/teaching/eco4306/Figure07_19_constructionchanges.xls

7.3.2 Seasonal ARMA Models

»> Monthly Changes in U.S. Residential Construction, January 2002-January 2011
» based on AC and PAC we choose to estimate AR(1) 4+ S-AR(1) Model

(1—®12 L)1 -1 L)Y, =¢

> note that this is equivalent to an AR(13) specification

+ et

(1= 1L — ®12L" — 1 ®12L3)Y; = c+ &

> in EViews in specification box enter const c ar(1) sar(12)

TABLE 7.3 Monthly Changes in Residential Construction,

Estimation Results of AR{1) and $-AR(1) Model

Dependent Variable: change CONST
Method: Least Squares
Sample (adjusted): 2003M03 201 1MO1
Included observations: 95 after adjustments
Convergence achieved after 6 iterations
Variable Coefficient  Std. Error  (-Statistic ~ Prob.
C -503.2408 2399.622 -0.247223  0.8053
AR(1) 0.439971  0.093551 4703012 0.0000
SAR(12) 0.923569  0.038771 23.82102  0.0000
R-squared 0.894790 Mean dependent var ~ -1283158
Adjusted R-squared 0.892502 S.D. dependent var 3036.076
S.E. of regression 995.4326 Akaike info criterion 16.67530
Sum squared resid 91161518 Schwarz criterion 16.75595
Log likelihood -789.0768 F-statistic 391.2194
Durbin—Watson stat 2.115719 Prob(F-statistic) 0.000000
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7.3.2 Seasonal ARMA Models
» Monthly Changes in U.S. Residential Construction, January 2002-January 2011
» multistep forecast from February 2011 to January 2012 with 95% confidence bands
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