Eco 4306 Economic and Business Forecasting Chapter 7: Forecasting with Autoregressive (AR) Processes

Outline

introduce the autoregressive processes

autocorrelation function - again helps us understand the past dependence, and help us to predict the dependence between today's information and the future

7.2 Autoregressive Models

simple linear regression model with cross sectional data

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

suppose we are dealing with time series rather than cross sectional data, so that

$$Y_t = \beta_0 + \beta_1 X_t + \epsilon_t$$

and if the explanatory variable is the lagged dependent variable $X_t = Y_{t-1}$ we get

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \epsilon_t$$

main idea: past is prologue as it determines the present, which in turn sets the stage for future

7.2 Autoregressive Models

- ▶ autoregressive (AR) model is a regression model in which the dependent variable and the regressors belong to the same stochastic process, and Y_t is regressed on the lagged values of itself $Y_{t-1}, Y_{t-2}, \ldots, Y_{t-p}$
- stochastic process $\{Y_t\}$ follows an **autoregressive model** of order p, referred as AR(p), if

 $Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + \varepsilon_t$

where ε_t is a white noise process

▶ the order is given by the largest lag in the right-hand side of the model, so a model Y_t = c + φ₂Y_{t-2} + ε_t is an autoregressive process AR(2) even though it has only one regressor in the right-hand side

7.2 Autoregressive Models

- we'll first analyze AR(1) and AR(2), then generalize to an autoregressive process AR(p)
- three questions we want to answer
 - 1. What does a time series of an AR process look like?
 - 2. What do the corresponding autocorrelation functions (AC and PAC) look like?
 - 3. What is the optimal forecast for an AR process?

consider the AR(1) process

$$Y_t = c + \phi_1 Y_{t-1} + \varepsilon_t$$

for different values of ϕ_1

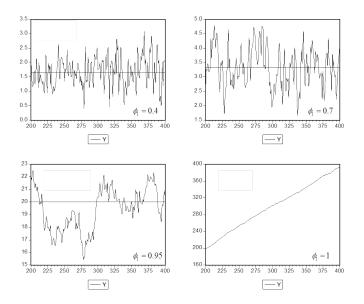
- ϕ_1 is called the **persistence parameter**, with larger ϕ_1 the series will remain below or above the unconditional mean for longer periods
- AR(1) process is second order weakly stationary if $|\phi_1| < 1$

 \blacktriangleright unconditional population mean, provided that AR(1) is weakly stationary, i.e. if $|\phi_1| < 1$

$$E(Y_t) = E(c + \phi_1 Y_{t-1} + \varepsilon_t) = c + \phi_1 E(Y_{t-1}) = c + \phi_1 E(Y_t) = \frac{c}{1 - \phi_1}$$

• unconditional variance, provided that AR(1) is weakly stationary, i.e. if $|\phi_1| < 1$

$$var(Y_t) = var(c + \phi_1 Y_{t-1} + \varepsilon_t) = \phi_1^2 var(Y_{t-1}) + \sigma_{\varepsilon}^2 = \phi_1^2 var(Y_t) + \sigma_{\varepsilon}^2 = \frac{\sigma_{\varepsilon}^2}{1 - \phi_1^2}$$

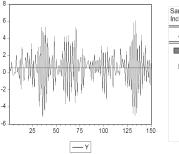


autocorrelation functions of an AR(1) process with $\phi_1>0$ have three distinctive features

- 1. for theoretical autocorrelation (AC) and partial autocorrelation (PAC) functions $\rho_1 = r_1 = \phi_1$ but since sample AC and PAC functions are just estimates of the theoretical ones there is some sampling error
- 2. AC decreases exponentially toward zero, decay is faster when ϕ_1 is smaller; this exponential decay is given by the formula $\rho_k = \phi_1^k$; e.g. with $\phi_1 = 0.95$ we have $\rho_1 = 0.95, \rho_2 = 0.95^2 = 0.90, \rho_3 = 0.95^3 = 0.86, \ldots$
- 3. PAC is characterized by only one spike: $r_1 \neq 0$, and $r_k = 0$ for k > 1

Sample: 2 1000 Included observation	ns: 999			Sample: 2 1000 Included observation	ns: 999			Sample: 2 1000 Included observation	ıs: 999		
Autocorrelation	Partial Correlation	AC	PAC	Autocorrelation	Partial Correlation	AC	PAC	Autocorrelation	Partial Correlation	AC	PAC
		2 0.082 3 0.018 4 0.043 5 -0.022 6 0.006 7 0.060 8 0.016 9 0.041 10 0.051	0.044 -0.056 0.033 0.058 -0.031 0.053 0.024 -0.006 -0.001 0.037 -0.023			2 0.546 3 0.400 4 0.279 5 0.168 6 0.085	-0.015 -0.030 -0.058 -0.025 -0.003 -0.057 -0.033 -0.011 0.057 -0.010 -0.053 -0.013			2 0.90 3 0.86 4 0.81 5 0.77 6 0.73	2 0.013 0 0.010 1 0.011 4 0.017 3 -0.014 1 -0.016
	$\phi_1 = 0.4$				$\phi_1 = 0.7$			[φ ₁ = 0.95		

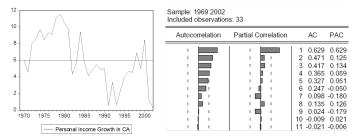
- if $\phi_1 < 0$ the autocorrelation functions have the same three properties above
- main difference: negative sign of the persistence parameter, causes the oscillating behavior of AC which switch between positive an negative numbers



Sample: 2 150 Included observations: 149				
Autocorrelation	Partial Correlation	AC PAC		
· ·	 ,	1 -0.894 -0.894		
	1 1	2 0.799 -0.002		
	1 1	3 -0.716 -0.01		
	יםי	4 0.629 -0.07		
· · · ·	i]D	5 -0.546 0.02		
·	i i 🗐 i	6 0.451 -0.11		
· ·	i]D	7 -0.361 0.04		
· 🗖	יםי	8 0.269 -0.08		
	📫 -	9 -0.228 -0.194		
· 🗖	1 1011	10 0.177 -0.07		
i 🗐 i	ipi	11 -0.108 0.10		
1 🗊 1	1 10	12 0.063 0.03		

Growth of Per Capita Personal Income Growth in California, 1969-2002, Figure07_07_CAincome.xls

based on AC and PAC, an AR(1) model seem to be a good starting point in the search for an appropriate model



▶ recall: under quadratic loss function the optimal point forecast is conditional mean, $f_{t,h} = \mu_{t+h|t} = E(Y_{t+h}|I_t)$

h	$\mu_{t+h t}$	$\sigma_{t+h t}^2$
	$c+\phi_1y_t\ (1+\phi_1)c+\phi_1^2y_t$	$ \begin{array}{c} \sigma_{\varepsilon}^{2} \\ (1+\phi_{1}^{2})\sigma_{\varepsilon}^{2} \end{array} \end{array} $
: : s	$(1 + \phi_1 + \phi_1^2 + \ldots + \phi_1^{s-1})c + \phi_1^s y_t$	$(1 + \phi_1^2 + \phi_1^4 + \ldots + \phi_1^{2(s-1)})\sigma_2^2$

 \blacktriangleright note that as $s \to \infty$ the forecast converges to the unconditional mean

$$f_{t,s} = (1 + \phi_1 + \phi_1^2 + \phi_1^3 + \dots)c = \frac{c}{1 - \phi_1}$$
$$\sigma_{t+s|t}^2 = (1 + \phi_1^2 + \phi_1^4 + \phi_1^6 + \dots) = \frac{\sigma_{\varepsilon}^2}{1 - \phi_1^2}$$

forecasting with an AR(1) is limited by the short memory of the process - in the long run the forecast converges to the unconditional mean

consider the AR(2) process

$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t$$

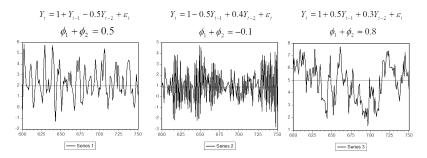
unconditional population mean, provided that AR(2) is weakly stationary

$$\begin{split} E(Y_t) &= E(c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t) = c + \phi_1 E(Y_{t-1}) + \phi_2 E(Y_{t-2}) \\ &= c + \phi_1 E(Y_t) + \phi_2 E(Y_t) = \frac{c}{1 - \phi_1 - \phi_2} \end{split}$$

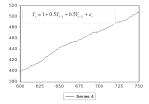
unconditional variance, provided that AR(2) is weakly stationary

$$var(Y_{t}) = var(c + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \varepsilon_{t}) = \phi_{1}^{2}var(Y_{t-1}) + \phi_{2}^{2}var(Y_{t-2}) + \sigma_{\varepsilon}^{2}$$
$$= \phi_{1}^{2}var(Y_{t}) + \phi_{2}^{2}var(Y_{t}) + \sigma_{\varepsilon}^{2} = \frac{\sigma_{\varepsilon}^{2}}{1 - \phi_{1}^{2} - \phi_{2}^{2}}$$

larger values of $\phi_1 + \phi_2$ imply smoother time series



• if $\phi_1 + \phi_2 = 1$ time series becomes non-stationary



 $Y_t = 1 + Y_{t-1} - 0.5Y_{t-2} + \varepsilon_t$

autocorrelation functions of an AR(2) process have three distinctive features

- 1. for theoretical autocorrelation (AC) and partial autocorrelation (PAC) functions $\rho_1 = r_1$ and $r_2 = \phi_2$ but since sample AC and PAC functions are just estimates of the theoretical ones there is some sampling error
- AC decreases toward zero, either in wave-like pattern, in oscillating pattern, or in exponentially decaying pattern
- 3. PAC is characterized by only two non-zero spikes: $r_1 \neq 0, \, r_2 \neq 0, \, {\rm and} \, \, r_k = 0$ for k>2

 $Y_t = 1 - 0.5Y_{t-1} + 0.4Y_{t-2} + \varepsilon_t$

PAC 0.701 0.701 0.637 0.286 0.553 0.073 0.459 -0.035 0.378 -0.042 0.329 0.023 0.283 0.019 0.263 0.049 0 223 -0 014 0.212 0.027 0.212 0.051 0.213 0.044 0.215 0.033 0.211 0.005 0.223 0.044

 $Y_{t} = 1 + 0.5Y_{t-1} + 0.3Y_{t-2} + \varepsilon_{t}$

▶ recall: under quadratic loss function the optimal point forecast is conditional mean, $f_{t,h} = \mu_{t+h|t} = E(Y_{t+h}|I_t)$

h	$\mu_{t+h t}$	$\sigma^2_{t+h t}$
	$\begin{array}{l} c+\phi_1y_t+\phi_2y_{t-1}\\ c+\phi_1f_{t,1}+\phi_2y_t \end{array}$	$\sigma_arepsilon^2 \ (1+\phi_1^2)\sigma_arepsilon^2$
÷		
s	$c + \phi_1 f_{t,s-1} + \phi_2 f_{t,s-2}$	$\sigma_{\varepsilon}^{2} + \phi_{1}^{2}\sigma_{t+s-1 t}^{2} + \phi_{2}^{2}\sigma_{t+s-2 t}^{2} + 2\phi_{1}\phi_{2}cov(e_{t,s-1}, e_{t,s-2})$

- ▶ just like in the case of AR(1), as $s \to \infty$ the forecast $f_{t,s}$ converges to the unconditional mean, and the variance of the forecast error $e_{t,s}$ converges to the unconditional variance of the process
- forecasting with an AR(2) is again limited by the short memory of the process

consider the AR(p) process

$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + \varepsilon_t$$

• unconditional population mean, provided that AR(p) is weakly stationary

$$E(Y_t) = \frac{c}{1 - \phi_1 - \phi_2 - \ldots - \phi_p}$$

• unconditional variance, provided that AR(p) is weakly stationary

$$var(Y_t) = \frac{\sigma_{\varepsilon}^2}{1 - \phi_1^2 - \phi_2^2 - \ldots - \phi_p^2}$$

autocorrelation functions of an AR(p) process have following features

- **1**. $\rho_1 = r_1$
- 2. AC decreases toward zero, either in wave-like pattern, in oscillating pattern, or in exponentially decaying pattern
- 3. PAC has only p non-zero spikes: $r_k \neq 0$ if $k \leq p,$ and $r_k = 0$ for k > p

• under quadratic loss function the optimal point forecast is conditional mean, $f_{t,h} = \mu_{t+h|t} = E(Y_{t+h}|I_t)$ and we have

h	$\mu_{t+h t}$	$\sigma_{t+h t}^2$
	$c + \phi_1 y_t + \phi_2 y_{t-1} + \ldots + \phi_p y_{t-p} c + \phi_1 f_{t,1} + \phi_2 y_t + \ldots + \phi_p y_{t-p+1}$	$\sigma_arepsilon^2\ (1+\phi_1^2)\sigma_arepsilon^2$
: : s	$c + \phi_1 f_{t,s-1} + \phi_2 f_{t,s-2} + \ldots + \phi_p f_{t,s-p}$	$\sigma_{\varepsilon}^2 + \sum_{i=1}^p \phi_i^2 \sigma_{t+s-i t}^2 + 2 \sum_{i=1}^p \sum_{j=i+1}^p$

▶ just like in the case of AR(1) and AR(2), as $s \to \infty$ the forecast $f_{t,s}$ converges to the unconditional mean, and the variance of the forecast error $e_{t,s}$ converges to the unconditional variance of the process