Eco 4306 Economic and Business Forecasting
Chapter 7: Forecasting with Autoregressive (AR) Processes
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Outline

» introduce the autoregressive processes

P autocorrelation function - again helps us understand the past dependence, and help
us to predict the dependence between today's information and the future
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7.2 Autoregressive Models

» simple linear regression model with cross sectional data
Y, =Bo+ B1Xi+ €
» suppose we are dealing with time series rather than cross sectional data, so that
Yi=pPo+ B1 Xt + et
and if the explanatory variable is the lagged dependent variable X; = Y;_1 we get
Y =Bo+ B1Yi-1+ et

P> main idea: past is prologue as it determines the present, which in turn sets the
stage for future

3/19



7.2 Autoregressive Models

> autoregressive (AR) model is a regression model in which the dependent variable
and the regressors belong to the same stochastic process, and Y; is regressed on
the lagged values of itself Y;_1,Y;_2,...,Y:_p

> stochastic process {Y;} follows an autoregressive model of order p, referred as
AR(p), if
Yi=c+¢1Yic1 +d2Yio+ ...+ dpYip +er

where € is a white noise process

P the order is given by the largest lag in the right-hand side of the model, so a model
Y: = ¢+ ¢p2Yi_o + € is an autoregressive process AR(2) even though it has only
one regressor in the right-hand side
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7.2 Autoregressive Models

» we'll first analyze AR(1) and AR(2), then generalize to an autoregressive process
AR(p)

P three questions we want to answer
1. What does a time series of an AR process look like?
2. What do the corresponding autocorrelation functions (AC and PAC) look like?

3. What is the optimal forecast for an AR process?
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7.2.1 The AR(1) Process

> consider the AR(1) process
Yi=c+p1Ye—1+et

for different values of ¢1

P> ¢ is called the persistence parameter, with larger ¢; the series will remain below
or above the unconditional mean for longer periods

» AR(1) process is second order weakly stationary if |¢1] < 1
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7.2.1 The AR(1) Process

» unconditional population mean, provided that AR(1) is weakly stationary, i.e. if
lp1] <1

c

E(Yt) = E(c+¢1Yi1+er) =c+ g1 E(Yi—1) =c+ g1 E(Yy) = e
— ¢

» unconditional variance, provided that AR(1) is weakly stationary, i.e. if [¢1] < 1

2
Te

1—¢?

var(Yy) = var(c+¢1Yi—1 +et) = ¢prvar(Yim1)+02 = p2var (V) +o2 =
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7.2.1 The AR(1) Process
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7.2.1 The AR(1) Process

autocorrelation functions of an AR(1) process with ¢1 > 0 have three distinctive
features

1. for theoretical autocorrelation (AC) and partial autocorrelation (PAC) functions
p1 = r1 = ¢1 but since sample AC and PAC functions are just estimates of the
theoretical ones there is some sampling error

2. AC decreases exponentially toward zero, decay is faster when ¢; is smaller; this
exponential decay is given by the formula px = d)’f; e.g. with ¢1 = 0.95 we have
p1 = 0.95, pa = 0.952 = 0.90, p3 = 0.95% = 0.86, ...

3. PAC is characterized by only one spike: 71 # 0, and r,, =0 for k > 1

Sample: 2 1000 Sample: 2 1000 Sample: 2 1000
Included observations: 999 Included observations: 999 Included observations: 999
Autocorrelation  Partial Correlation AC  PAC Autocorrelation  Partial Correlation AC  PAC Autocorrelation  Partial Correlation AC  PAC

10334 0334 10732 0732 | 10951 0951
2 0.082 -0.034 2 0546 0.021 ! | 2 0.904 -0.008
3 0018 0,002 3 0.400 -0.015 ! | 3 0861 0.009
40043 0044 4 0.279 -0.030 ' L 4 0817 -0.019
5-0.022 -0.056 5 0168 -0.058 ! W) 5 0774 -0.016
6 0.006 0033 6 0085 -0.025 ! i 6 0734 0.005
7 0060 0058 7 0.032 -0.003 ! W) 7 0696 -0.002
8 0.016 -0.031 8 -0.026 -0.057 ! i 8 0.658 -0.022
9 0.041 0053 9 -0.071 -0.033 ! W) 9 0622 0013
10 0051 0.024 10-0.084 0011 ! ) 10 0590 0010
11 0.028 -0.006 11-0.060 0.057 ' i 11 0561 0011
12 0.001 -0.001 12 -0.048 0.010 ! ] 12 0534 0017
13 0036 0.037 13 -0.060 -0.053 ' ) 13 0508 -0.014
14 0.008 -0.023 14 -0.063 -0.013 [ i\ 14 0.481 -0.016
15 -0.026 -0.023 15 -0.054 0.006 ! h 15 0.457 0.007
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7.2.1 The AR(1) Process

P if 1 < 0 the autocorrelation functions have the same three properties above

» main difference: negative sign of the persistence parameter, causes the oscillating

behavior of AC which switch between positive an negative numbers

Sample: 2 150

Included observations: 149

Autocorrelation

Partial Correlation

AC

PAC

1-0.894
2 0799
3-0.716
4 0629
5 -0.546
6 0451
7 -0.361
8 0.269
9 -0.228
10 0177
11 -0.108
12 0.063

-0.894
-0.002
-0.015
-0.070

0.026

-0.116

0.046

-0.080
0194
0079

0.108
0.032
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7.2.1 The AR(1) Process

» Growth of Per Capita Personal Income Growth in California, 1969-2002,
Figure07_07_CAincome.xls

» based on AC and PAC, an AR(1) model seem to be a good starting point in the
search for an appropriate model

12 Sample: 1969 2002
Included observations: 33
10
Autocorrelation  Partial Correlation AC  PAC
8
A ! ! 1 0.629 0.629
6 A i | ' 2 0471 0125
\/ V Y ! I [ 3 0417 0.134
" ! ! ! 4 0365 0.059
| 1 ' 5 0.327 0.051
, \ ! | i | 6 0.247 -0.050
1 I 1 ! l 7 0.098 -0.180
o ! ! ! ! 8 0.135 0.126
1970 1975 1980 1985 1980 1995 2000 : : : : 9 0024 -0479
I 1 ! I

10 -0.009 0.021
11 -0.021 -0.006

—— Personal Income Growth in CA
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http://myweb.ttu.edu/jduras/files/teaching/eco4306/Figure07_07_CAincome.xls

7.2.1 The AR(1) Process

» recall: under quadratic loss function the optimal point forecast is conditional mean,
ft.n = beqn)e = E(Yeynllt)

h pegnpe 0,52+h|t

1 cH+ d1ye ‘7?

2 (L+é1)c+ P2y (14 ¢2)o?

s (4o 462+ 46 Dot iy (1+¢2+¢t+...+¢707)02

» note that as s — oo the forecast converges to the unconditional mean

C
frs =+ o1+ 07 +¢7+..)c= s

2 2 4 6 o2
s =1+ +81+o1+..) = 1

> forecasting with an AR(1) is limited by the short memory of the process - in the
long run the forecast converges to the unconditional mean
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7.2.2 The AR(2) Process

> consider the AR(2) process

Ye=c+o1Yi1+ ¢p2Yi2+ e

» unconditional population mean, provided that AR(2) is weakly stationary

E(Y:) =E(c+ ¢1Yi—1 + ¢2Yio +et) =c+ 1 E(Yi—1) + 92 E(Yi—2)
=c+nEN) +2E(Yy) = m

» unconditional variance, provided that AR(2) is weakly stationary

var(Yy) = var(c+ ¢1Yi—1 + ¢2Yia + e1) = d2var(Yi—1) + d3var(Yi—a) + o2

o2

= ¢ivar(Yy) + dpvar(Yi) + o = m
1 2

13/19



7.2.2 The AR(2) Process

» larger values of ¢1 + ¢2 imply smoother time series

Y, =1+Y,_ -05Y,_, +¢, Y, =1-0.5Y,, +0.4Y,_, +¢, Y, =1+0.5Y,, +03Y,_, +¢,
¢1+¢2:0-5 ¢ +¢,=-0.1 $ +¢,=08
° 8

| | : AM /\
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> if 1 + ¢2 = 1 time series becomes non-stationary

500 ¥, =1+057, +0.57,, +&, /
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7.2.2 The AR(2) Process

autocorrelation functions of an AR(2) process have three distinctive features

1. for theoretical autocorrelation (AC) and partial autocorrelation (PAC) functions
p1 =r1 and r2 = ¢2 but since sample AC and PAC functions are just estimates of
the theoretical ones there is some sampling error

2. AC decreases toward zero, either in wave-like pattern, in oscillating pattern, or in
exponentially decaying pattern

3. PAC is characterized by only two non-zero spikes: r1 # 0, r2 # 0, and 7, = 0 for

k>2
Y,:le’ilfOSYfizver Yt—lfO.S}r?lvOA}’[?zvxr }I—lvOSYFl-O.SYFz-s,
Sample: 300 700 Sample: 300 700 Sample: 300 700
Included observations: 401 Included observations: 401 Included observations: 401
Autocorrelation  Partial Correlation AC  PAC Autocorrelation  Partial Correlation AC  PAC Autocorrelation  Partial Correlation AC  PAC
1-0.810 -0.810 1 0701 0.701
2 0.782 0.365 2 0637 0.286
3 -0.692 0.023 3 0553 0.073
4 0622 -0.052 4 0459 -0.035
5 -0.566 -0.020 5 0.378 -0.042
6 0.500 -0.025 6 0329 0.023
7 -0.451 0.003 7 0283 0.019
8 0408 0.021 8 0.263 0.049
9 -0.373 -0.024 9 0.223 -0.014
10 0.336 -0.011 10 0212 0.027
11 -0.355 -0.166 11 0212 0.051
12 0.323 -0.017 12 0213 0.044
13 -0.336 -0.039 13 0215 0.033
140291 -0.103 14 0211 0.005
15 -0.274 0.033 15 0223 0.044
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7.2.2 The AR(2) Process

P recall: under quadratic loss function the optimal point forecast is conditional mean,
Jt,n = Htthlt = E(Yiynllt)

h pignpe Ut2+h\t
1 c+ b1yt + P2yi—1 o?
2 c+di1fe + days (1+ ¢?)o2

s ctdifis1t+afisa o2+l g, + 307 o)+ 201dacov(ers1,€t,5-2)

> just like in the case of AR(1), as s — oo the forecast f; s converges to the
unconditional mean, and the variance of the forecast error e; s converges to the
unconditional variance of the process

> forecasting with an AR(2) is again limited by the short memory of the process
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7.2.3 The AR(p) Process

> consider the AR(p) process
Yi=c+p1Yic1+¢2Ye o+ ...+ dpYipter
» unconditional population mean, provided that AR(p) is weakly stationary

C
E(Yt):1*¢1*¢>2*~-~*¢p

» unconditional variance, provided that AR(p) is weakly stationary
a2

1— 62— ¢ —...— ¢2

var(Y:) =
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7.2.3 The AR(p) Process

autocorrelation functions of an AR(p) process have following features
1L.pp=m

2. AC decreases toward zero, either in wave-like pattern, in oscillating pattern, or in
exponentially decaying pattern

3. PAC has only p non-zero spikes: ri # 0 if k <p, and r, =0 for k > p
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7.2.3 The AR(p) Process

» under quadratic loss function the optimal point forecast is conditional mean,
Jt.n = pegn)e = E(Yeqpnll) and we have

h Httht 0§+h|t
1 c+ b1yt + P2yi—1+ ...+ PpYt—p o?
2 ct+d1fir o2y + o+ PpYt—pt1 (1+ ¢?)o?

s c+difis—1+d2frs—ot . Fbpfrs—p OE+D ., ¢22‘7¢2+s—i|t +2>°0 f:i+1

» just like in the case of AR(1) and AR(2), as s — oo the forecast f; s converges to
the unconditional mean, and the variance of the forecast error e s converges to
the unconditional variance of the process
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