
Eco 4306 Economic and Business Forecasting
Chapter 7: Forecasting with Autoregressive (AR) Processes
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Outline

I introduce the autoregressive processes
I autocorrelation function - again helps us understand the past dependence, and help

us to predict the dependence between today’s information and the future
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7.2 Autoregressive Models

I simple linear regression model with cross sectional data

Yi = β0 + β1Xi + εi

I suppose we are dealing with time series rather than cross sectional data, so that

Yt = β0 + β1Xt + εt

and if the explanatory variable is the lagged dependent variable Xt = Yt−1 we get

Yt = β0 + β1Yt−1 + εt

I main idea: past is prologue as it determines the present, which in turn sets the
stage for future
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7.2 Autoregressive Models

I autoregressive (AR) model is a regression model in which the dependent variable
and the regressors belong to the same stochastic process, and Yt is regressed on
the lagged values of itself Yt−1, Yt−2, . . . , Yt−p

I stochastic process {Yt} follows an autoregressive model of order p, referred as
AR(p), if

Yt = c+ φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt

where εt is a white noise process
I the order is given by the largest lag in the right-hand side of the model, so a model
Yt = c+ φ2Yt−2 + εt is an autoregressive process AR(2) even though it has only
one regressor in the right-hand side
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7.2 Autoregressive Models

I we’ll first analyze AR(1) and AR(2), then generalize to an autoregressive process
AR(p)

I three questions we want to answer
1. What does a time series of an AR process look like?

2. What do the corresponding autocorrelation functions (AC and PAC) look like?

3. What is the optimal forecast for an AR process?
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7.2.1 The AR(1) Process

I consider the AR(1) process

Yt = c+ φ1Yt−1 + εt

for different values of φ1

I φ1 is called the persistence parameter, with larger φ1 the series will remain below
or above the unconditional mean for longer periods

I AR(1) process is second order weakly stationary if |φ1| < 1

6 / 19



7.2.1 The AR(1) Process

I unconditional population mean, provided that AR(1) is weakly stationary, i.e. if
|φ1| < 1

E(Yt) = E(c+ φ1Yt−1 + εt) = c+ φ1E(Yt−1) = c+ φ1E(Yt) =
c

1− φ1

I unconditional variance, provided that AR(1) is weakly stationary, i.e. if |φ1| < 1

var(Yt) = var(c+φ1Yt−1 +εt) = φ2
1var(Yt−1)+σ2

ε = φ2
1var(Yt)+σ2

ε =
σ2

ε

1− φ2
1
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7.2.1 The AR(1) Process
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7.2.1 The AR(1) Process
autocorrelation functions of an AR(1) process with φ1 > 0 have three distinctive
features

1. for theoretical autocorrelation (AC) and partial autocorrelation (PAC) functions
ρ1 = r1 = φ1 but since sample AC and PAC functions are just estimates of the
theoretical ones there is some sampling error

2. AC decreases exponentially toward zero, decay is faster when φ1 is smaller; this
exponential decay is given by the formula ρk = φk

1 ; e.g. with φ1 = 0.95 we have
ρ1 = 0.95, ρ2 = 0.952 = 0.90, ρ3 = 0.953 = 0.86, . . .

3. PAC is characterized by only one spike: r1 6= 0, and rk = 0 for k > 1
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7.2.1 The AR(1) Process

I if φ1 < 0 the autocorrelation functions have the same three properties above
I main difference: negative sign of the persistence parameter, causes the oscillating

behavior of AC which switch between positive an negative numbers
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7.2.1 The AR(1) Process

I Growth of Per Capita Personal Income Growth in California, 1969-2002,
Figure07_07_CAincome.xls

I based on AC and PAC, an AR(1) model seem to be a good starting point in the
search for an appropriate model
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7.2.1 The AR(1) Process

I recall: under quadratic loss function the optimal point forecast is conditional mean,
ft,h = µt+h|t = E(Yt+h|It)

h µt+h|t σ2
t+h|t

1 c+ φ1yt σ2
ε

2 (1 + φ1)c+ φ2
1yt (1 + φ2

1)σ2
ε

...
s (1 + φ1 + φ2

1 + . . .+ φs−1
1 )c+ φs

1yt (1 + φ2
1 + φ4

1 + . . .+ φ
2(s−1)
1 )σ2

ε

I note that as s→∞ the forecast converges to the unconditional mean

ft,s = (1 + φ1 + φ2
1 + φ3

1 + . . .)c =
c

1− φ1

σ2
t+s|t = (1 + φ2

1 + φ4
1 + φ6

1 + . . .) =
σ2

ε

1− φ2
1

I forecasting with an AR(1) is limited by the short memory of the process - in the
long run the forecast converges to the unconditional mean
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7.2.2 The AR(2) Process

I consider the AR(2) process

Yt = c+ φ1Yt−1 + φ2Yt−2 + εt

I unconditional population mean, provided that AR(2) is weakly stationary

E(Yt) = E(c+ φ1Yt−1 + φ2Yt−2 + εt) = c+ φ1E(Yt−1) + φ2E(Yt−2)

= c+ φ1E(Yt) + φ2E(Yt) =
c

1− φ1 − φ2

I unconditional variance, provided that AR(2) is weakly stationary

var(Yt) = var(c+ φ1Yt−1 + φ2Yt−2 + εt) = φ2
1var(Yt−1) + φ2

2var(Yt−2) + σ2
ε

= φ2
1var(Yt) + φ2

2var(Yt) + σ2
ε =

σ2
ε

1− φ2
1 − φ

2
2
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7.2.2 The AR(2) Process
I larger values of φ1 + φ2 imply smoother time series

I if φ1 + φ2 = 1 time series becomes non-stationary
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7.2.2 The AR(2) Process

autocorrelation functions of an AR(2) process have three distinctive features

1. for theoretical autocorrelation (AC) and partial autocorrelation (PAC) functions
ρ1 = r1 and r2 = φ2 but since sample AC and PAC functions are just estimates of
the theoretical ones there is some sampling error

2. AC decreases toward zero, either in wave-like pattern, in oscillating pattern, or in
exponentially decaying pattern

3. PAC is characterized by only two non-zero spikes: r1 6= 0, r2 6= 0, and rk = 0 for
k > 2
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7.2.2 The AR(2) Process

I recall: under quadratic loss function the optimal point forecast is conditional mean,
ft,h = µt+h|t = E(Yt+h|It)

h µt+h|t σ2
t+h|t

1 c+ φ1yt + φ2yt−1 σ2
ε

2 c+ φ1ft,1 + φ2yt (1 + φ2
1)σ2

ε

...
s c+ φ1ft,s−1 + φ2ft,s−2 σ2

ε + φ2
1σ

2
t+s−1|t + φ2

2σ
2
t+s−2|t + 2φ1φ2cov(et,s−1, et,s−2)

I just like in the case of AR(1), as s→∞ the forecast ft,s converges to the
unconditional mean, and the variance of the forecast error et,s converges to the
unconditional variance of the process

I forecasting with an AR(2) is again limited by the short memory of the process
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7.2.3 The AR(p) Process

I consider the AR(p) process

Yt = c+ φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt

I unconditional population mean, provided that AR(p) is weakly stationary

E(Yt) =
c

1− φ1 − φ2 − . . .− φp

I unconditional variance, provided that AR(p) is weakly stationary

var(Yt) =
σ2

ε

1− φ2
1 − φ

2
2 − . . .− φ2

p
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7.2.3 The AR(p) Process

autocorrelation functions of an AR(p) process have following features

1. ρ1 = r1

2. AC decreases toward zero, either in wave-like pattern, in oscillating pattern, or in
exponentially decaying pattern

3. PAC has only p non-zero spikes: rk 6= 0 if k ≤ p, and rk = 0 for k > p

18 / 19



7.2.3 The AR(p) Process

I under quadratic loss function the optimal point forecast is conditional mean,
ft,h = µt+h|t = E(Yt+h|It) and we have

h µt+h|t σ2
t+h|t

1 c+ φ1yt + φ2yt−1 + . . .+ φpyt−p σ2
ε

2 c+ φ1ft,1 + φ2yt + . . .+ φpyt−p+1 (1 + φ2
1)σ2

ε

...
s c+ φ1ft,s−1 + φ2ft,s−2 + . . .+ φpft,s−p σ2

ε +
∑p

i=1 φ
2
i σ

2
t+s−i|t + 2

∑p

i=1

∑p

j=i+1 φiφjcov(et,s−i, et,s−j)

I just like in the case of AR(1) and AR(2), as s→∞ the forecast ft,s converges to
the unconditional mean, and the variance of the forecast error et,s converges to
the unconditional variance of the process
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