Eco 4306 Economic and Business Forecasting
Chapter 6: Forecasting with Moving Average (MA) Processes
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Outline

P> we now start building time series models

first, we introduce white noise process, characterized by absence of linear time
dependence

after that we will develop a moving average model for processes which do exhibit
some linear time dependence
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6.1 A Model with No Dependence: White Noise

> a stationary stochastic process {e:} is called white noise process if p;, = 0 for
k> 1, and rp =0 for k > 1, that is if autocorrelation and partial autocorrelation
functions are zero

P no linear dependence, autocorrelations are zero - no link between past and present
observations, no link between present and future observations

» no dependence to exploit so we cannot predict future realizations of the process -
€t is unpredictable shock, residual in our time series models
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6.1 A Model with No Dependence: White Noise
> consider stochastic process Y; = 1 + ¢; where ¢, ~ N(0,4)

» theoretical unconditional mean and variance of {Y;} are E(Y;) = E(1+¢&;) =1
and var(Y;) =var(l+e¢) =4

» first two population moments are thus time invariant

Sample: 11000
Included observations: 1000

Autocorrelation  Partial Correlation AC  PAC

1-0.020 -0.020
2 -0.013 -0.014
3 -0.066 -0.066
4 -0.027 -0.030
5 -0.004 -0.007
6
7
8
9

-0.004 -0.010
0.056 0.052
0.001 0.000

0.026 0.027
10 0.018 0.026
11 -0.030 -0.026
12 -0.013 -0.009
13 0.001 0.004
14 0.040 0.035
15 0.001 0.000
16 0.043 0.042

— Ynoise=1+N(0.4)

Series: Ynoise
Sample 11000
80 Observations 1000
Mean 0957014
60 Median 0941058
Maximum 7235267
Minimum -5.443433
40 Std Dev. 2034487
Skewness  -0.020060
Kurtosis 2784223
20
Jarque-Bera 2080507
Probabilty 0351763
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6.1 A Model with No Dependence: White Noise

> time series {y:} looks very ragged

> histogram for {y:} its has the expected bell shape corresponding to a normal
distribution

P> skewness is approximately zero, kurtosis approximately 3, Jarque-Bera test
indicates that normality is not rejected (p = 0.351)

> first two sample moments are very close to the population moments - sample mean
is 0.96, sample standard deviation is 2.03

P time series plot shows that realizations bounce around a mean value of 1 and
volatility does not appear to change significantly

> AC function and PAC function at all lags are not significantly different from 0 at
5% level

> time series {y:} is thus a white noise process
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6.1 A Model with No Dependence: White Noise

» in business and economics some data behave very similarly to a white noise process
» white noise processes are especially common among financial series

P this is the reason why these data are so difficult to predict - they do not exhibit
any temporal linear dependence that could be consistently exploited

> for example: returns for individual stocks and for stock market indices have
correlograms that resemble a white noise process
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6.1 A Model with No Dependence: White Noise

> returns, Microsoft and DJ Index, 1986M4-2004M7, Figure06_02__MSFT_DJ.xls

> all lags of AC and PAC functions are not significantly different from 0 at 5% level

40+ 20
304
204 10
104
o
0
104
-10
20
304 204
-404
-50 T T T T -30
86 88 90 92 94 96 9 00 02 ™ 86 88 90 92 94 95 93 00 02 04
Wicrosoft monthly returns Dow Jones monthly returns
Sample; 1986:03 2004:07 Sample: 108603 2004:07
Included observations: 220 Included observations: 220
Autocorrelation  Partial Correlation AC  PAC Autocorrelation  Partial Correlation AC  PAG
' ' 1-0.081 -0.081 i I 10021 -0021
'l L'l 2 -0.094 -0.101 i " 044 0044
] ] 3 0432 017 o o 3 -0.056 -0.058
i L 40,017 -0.006 o a: 40126 -0.131
| g 5 0008 0.030 i i 5 0048 0037
i ' 6 -0.013 -0.020 o in 6 -0.031 -0.045
7 0406 0.113 ) ] 7 0082 0081
8 0015 0.023 i W 8 0,044 -0.057
9 0006 0.024 g o 043 -0.030
10 0131 0.112 o i 10 0043 0035
11 0013 0.038 i i 110012 0.006
12 0.016 0.005 g o 12 0015 -0.006
13 -0.020 -0.045 g o 13 0003 0003
14 0030 0013 i g 14 40034 -0034
15 -0.075 0,091 e i 15 -0.059 -0.060
16 0.064 0.068 o o 16 0039 0.042
17 0.085 0.051 ol g 17 0031 0012
18 -0.094 -0.064 ' 1 18 0079 0.076
19 -0.049 -0.079 i i 19 0,026 -0.028
20 0046 0.005 i e 20 0.016 0.005
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http://myweb.ttu.edu/jduras/files/teaching/eco4306/Figure06_02_MSFT_DJ.xls

6.3 Forecasting with Moving Average Models

> a moving average process of order g, referred to as MA(q), has the form
Yi=p+et+ 01601 +02ce—2+ ... +0450—¢

where ¢ is a zero-mean white noise process

> order of the model is given by the largest lag, not by the number of lag variables in
the right-hand side

» for instance
Yi=p+et+ 0383

is an MA(3) because the largest lag is 3 although there is only one lagged variable
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6.3 Forecasting with Moving Average Models

» we will next look at the statistical properties of MA models
our ultimate objective is constructing the optimal forecast

we will analyze the lowest order process, MA(1), generalization to MA(q) is
straightforward

P three questions we want to answer

1. What does a time series of an MA process look like?
2. How do the AC and PAC functions for MA process look like?
3. What is the optimal forecast for an MA process?
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6.3.1 MA(1) Process
> consider MA(1) process Y; = p+ & + 0gr—1

> four simulations, each 200 observations of MA(1), with different values of
0 € {0.05,0.5,0.95,2.0}, but with same p = 2, and & ~ N(0,0.25)

-1 T T T T T T T -1 T T T T T T T
200 225 250 275 300 325 350 375 400 200 225 250 275 300 325 350 375 400

—— MA(1) with theta= 0.05 —— MA(1) with theta=0.5

-1 T T T T -1 T T T T T T
200 225 250 275 300 325 350 375 400 200 225 250 275 300 325 350 375 400

— MA(1) with theta=0.95 —— MA(1) with theta=2.0
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6.3.1 MA(1) Process

> four time series seem to be weakly stationary

unconditional population mean is time invariant

E(Y) = B(u+ et + 0201) = p

» unconditional variance is also time invariant
var(Yy) = E(Yi—E(Y3))? = E(et+0e4—1)% = BE(e24+20ere4—1+0%c2_ ) = (14+62)02

and it is increasing with 6

> we still need to verify that the autocorrelation function does not depend on time to
claim that the process is covariance stationary
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6.3.1

MA(1) Process

» only p1 in the sample AC function is significantly different from zero

> py is proportional to 6 for |#] < 1 and its sign is the same as the sign of 0

Sample: 1 2000

Included observations: 1999

Sample: 1 2000

Included observations: 1999

Autocorrelation  Partial Correlation AC  PAC Autocorrelation  Partial Correlation AC  PAC

| [ 1 0072 0072 1 1 0406 0.408

! 2 -0.027 -0.032 0 2 -0.038 -0.243

{ 3 -0.061 -0.057 i 3-0.076 0.053

! 4 -0.024 -0.017 g 4 -0.038 -0.039

| i 5 0.016 0.016 " 5 0.006 0.029

| 6 -0.004 -0.011 [ 6 0.009 -0.015

[ [ 7 0022 0022 L 7 0.020 0.030

[ 1 [ 8 0.011 -0.012

| [ g 9 -0.003 0.002

| i 10 -0.010 -0.009

Sample: 12000 Sample: 12000

Included observations: 1999 Included observations: 1999

Autocorrelation  Partial Correlation AC  PAC Autocorrelation  Partial Correlation AC  PAC

1 0498 0.498 1 0406 0406

2 -0.042 -0.386 2 -0.039 -0.243

3-0.081 0.220 3 -0076 0.053

4 -0.042 -0.183 4 -0.038 -0.039

5 0.003 0.157 5 0.006 0.030

8 0.013 -0.127 6 0009 -0.016

7 0019 0131 7 0.020 0.030

8 0.013 -0.112 8 0010 -0.013

9 -0.004 0.09: 9 -0.004 0.002

10 -0.010 -0.088 10 -0.010 -0.008
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6.3.1 MA(1) Process

» population autocovariance of order 1

M = E[(Ys — p) (Y1 — p)] = E(et + 0¢—1)(et—1 + Oe1—2)] = 00

» population autocorrelation of order 1

M 6o 0

pL= Yo - (1+ 62)02 - 1+ 62

» population autocovariance of order k > 1
Ve = E[(Ye — 1) (Yeop — )] = El(e¢ + Oe¢—1)(et—k + Ot—k—1)] = 0
thus for population autocorrelation of order k& > 1 we have

Tk
pr=—=0
Y0

> so autocorrelation function really does not depend on time, and thus MA(1) is
covariance stationary process
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6.3.1 MA(1) Process

» note that AC function and PAC function for the MA(1) processes with 6 = 0.5 and
0 = 2 are identical

> this is due to the fact that for the MA(1) with parameter § = é we get

A 1
__ 0 4 9

1402 1+ 2+l 1467

P1

» an MA(1) process is called invertible if |§] < 1

» if an MA process is invertible, we can always find an autoregressive representation
in which the present Y; is a function of the past Y:_1,Y:—2,Y:_3,...
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6.3.1 MA(1) Process

» we will next analyze and forecast the percentage change in 5-Year Constant
Maturity Yield on Treasury Securities, using April 1953 to April 2008 sample

> data available at FRED https://fred.stlouisfed.org/graph/?g=mXGl and
Figure06_05_Table6_1_ treasury.xls

» U.S. Treasury securities are considered to be the least risky assets

» they constitute an asset of reference to monitor the level of risk of other
fixed-income securities such as grade bonds and certificates of deposit

> risk spread - difference between the yield of the fixed-income security and the yield
of a corresponding Treasury security with the same maturity
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https://fred.stlouisfed.org/graph/?g=mXGl
http://myweb.ttu.edu/jduras/files/teaching/eco4306/Figure06_05_Table6_1_treasury.xls

6.3.1 MA(1) Process
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6.3.1 MA(1) Process

» AC function and PAC function similar to those for MA(1)

» AC function has only one positive spike at p1, remaining autocorrelations are not

significantly different from zero

» PAC function alternating signs, decreasing toward zero

Date: 02/07/18 Time: 22:03
Sample: 1953M05 2008M04
Included observations: 660

Autocorrelation

Partial Correlation

AC PAC

Q-5Stat

Prob

=
m

1 0332 0332
2 -0.053 -0.183
3 0002 0.097
4 0022 -0.027
5 -0.042 -0.042
6 -0.060 -0.029
7 -0.070 -0.058
8 0.025 0075
9 0.080 0.038
10 0.036 0.005
11 0.029 0.033
12 -0.044 -0.089

72915
74786
74789
75108
76.278
78.664
81.958
82.362
86.667
87563
88126
89.448

0.000
0.000
0.000
0.000
0.000
0.000
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6.3.1 MA(1) Process

» recall: under quadratic loss function the optimal point forecast is conditional mean,
ftn = Htth|t = E(Yiynllt)
P> we next analyze this optimal forecast under quadratic loss function for h = 1,2,...

> we will see that forecasting with an MA(1) is rather limited by the very short
memory of the process - for h > 1 the optimal forecast is identical to the
unconditional mean of the process

18/32



6.3.1 MA(1) Process

» for MA(1) model and forecasting horizon h = 1 we have

optimal point forecast

fer = pey1e = BEYVipalle) = E(p + ecq1 + Oer) = p+ Ot

i. 1-period-ahead forecast error

et,1 =Yir1 — fr1 =p 41 + 0 —p—Oeg =441

uncertainty associated with the forecast is summarized by the variance of the
forecast error
2 2
Oiiie = var(et+1) = o2

iv. density forecast is the conditional probability density function of the process at the

future date; assuming ¢ is normally distributed we have

F(YeqalIt) ~ N(p+ 0z, 02)

. using the density forecast we can construct interval forecasts - since for

Z ~ N(0,1) we have P(—1.96 < Z < 1.96) = 0.95, the 95% interval forecast for
Yit1is

Htt1]t + 1'96‘7t+1|t = (Mt+1|t - 1~96‘7t+1\t7ﬂt+1\t + 1~960t+1|t)
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6.3.1 MA(1) Process

for MA(1) model and forecasting horizon h = 2 we have

. optimal point forecast

fe2 = pygope = EVegollt) = E(u+ei42 + 0 q1) = p

i. 2-period-ahead forecast error

et2=Yii2 — frto=p+erqyo+ 0401 — p=epq42 + 0411

uncertainty associated with the forecast is summarized by the variance of the

forecast error
crt2+2‘t = var(ei+2) = (1 + 6%)o?

iv. density forecast is the conditional probability density function of the process at the

future date; assuming &; is normally distributed we have

f(Vigallt) ~ N(p, (1+ 6%)02)
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6.3.1 MA(1) Process

for MA(1) model and forecasting horizon h = s we have

. optimal point forecast

ft,s = Hits|t = E(Yiys|lt) = p

i. s-period-ahead forecast error

et,s = Yits — ft,s =+ tqs +0t4s—1 — = €45 + Ot 4s—1

uncertainty associated with the forecast is summarized by the variance of the

forecast error
U?+S‘t =wvar(et+s) = (1+ 02)0'?

iv. density forecast is the conditional probability density function of the process at the

future date; assuming &; is normally distributed we have

f(Y1t+s|It) ~ N(Mv (1 + 92)0—2)
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6.3.1 MA(1) Process

Forecasting 5-year Constant Maturity Yield on Treasury Securities:

>

>

AC and PAC suggest that the Percentage Change in 5-year Constant Maturity
Yield on Treasury Securities follows an MA(1) process

we will use 1953M5-2007M11 as estimation sample and 2007M12-2008M4 as
prediction sample

we will thus construct forecast for h = 1,2,...,5 so 1-step to 5-step ahead
forecasts

to estimate 6 in EViews choose Object — New Object — Equation, in equation
specification write dy ¢ MA(1), and in sample 1953M5-2007M11

afterwards to create a multistep forecast in EViews open the equation and choose
Proc — Forecast, enter name dyf_se for standard deviation o, 4; into “S.E.
(optional)”, change forecast sample to 2007M12-2008M4, and select “Dynamic
forecast” method in the forecast window

to construct the lower and the upper bounds of the 95% confidence interval
(Btgnje — 1960 by eqn|e + 1.960, 4 p¢) choose Object — Generate series set
sample to 2007M12-2008M4 and enter first dyf_Ib = dyf - 1.96*dyf_se and then
the second time dyf_ub = dyf + 1.96*dyf_se
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6.3.1 MA(1) Process

Forecasting 5-year Constant Maturity Yield on Treasury Securities:

16

12 4

-84

12

-16
T T T T
200701 2007:04 200707 200710 2008:01 2008:04

—o— Actual Data

—o— Multistep Forecast

—o— Lower bound, 95% confidence interval
—o— Upper bound, 95% confidence interval
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6.3.2 MA(2) Process

> consider now an MA(2) process Y; = p+ et + 016¢—1 + O2e1—2

> two simulations, each 200 observations of MA(2), with 6; = 1.70,602 = 0.72 and
with 61 = —1,02 = 0.25, in addition to u = 2 and &; ~ N(0,0.25)

Y, =2+17&_+072¢,_, +¢&, Y, =2-¢_+025¢_, +¢,

ol e
u UUU 'UW V ! \«WW

] 04

N

o

1
200 225 250 275 300 325 350 375 400 200 205 250 275 300 325 350 375 400

[—— MA() with theta_1=1.70 and theta_2=0.72 [—— MA) with theta_1=-1 and theta_2=0.25

P unconditional population mean is time invariant
E(Y:)=E(p+et+016¢—1 4+ O2e4—2) =
» unconditional variance is also time invariant
var(Yy) = E(Y: — E(Y))? = BElet + 016¢—1 + f2e4—2)2 = (1 + 67 + 63)02
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6.3.2 MA(2) Process

> first two components in sample AC function are different from zero p; # 0, p2 # 0,
remaining autocorrelations are equal to zero, g, = 0 for k > 2

» sample PAC function decreases toward zero

Sample: 12000 2+1.7¢_+0.72¢_, + 5,
Included observations: 1998

Autocorrelation Partial Correlation AC  PAC

1 0.649 0.649
2 0.109 -0.542
3 -0.082 0.394
4 -0.054 -0.315
5-0.007 0.271
6 0.016 -0.215
7 0.022 0.199
8 0.014 -0.184
9 -0.002 0.157
10 -0.010 -0.143

Sample: 1 2000
Included observations: 1998

Y. =2

Autocorrelation Partial Correlation AC  PAC

-0.592 -0.592
0.119 -0.356
-0.026 -0.250
-0.001 -0.199
0.031 -0.106
-0.034 -0.088
0.028 -0.043
-0.014 -0.022
0.008 -0.001
-0.012 -0.008

DSOENDO B WN =
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6.3.2 MA(2) Process

» population autocovariance of order 1
Y1 = B[(Ys — ) (Ye—1 — )] = (61 + 016202
thus for population autocorrelation of order 1 we have
o=t G100z
Yo o 1+062+062

» population autocovariance of order k = 2
Y2 = E[(Ys = p)(Yi—2 — p)] = 0202
thus for population autocorrelation of order k = 2 we have
_ 2 _ 02

a=2 2
7= % 1+ 62 + 62

» autocorrelations of higher order are all equal to zero

i = E[(Yt — p) (Yo —p)] =0
thus for population autocorrelation of order k > 2 we have

L
pe=—=0
70

> since autocorrelation function does not depend on time, MA(2) is covariance
stationary process
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6.3.2 MA(2) Process

» for MA(2) model and forecasting horizon h = 1 we have

optimal point forecast

fia = g1 = E(Vera|It) = E(u+etq1 + 016 +02ee—1) = pp+ 0160 + 02611

i. 1-period-ahead forecast error

et,1 =Yi41 — fe,1 =p+eeqp1 + 016 +02ei—1 — p— 16 — O2ei—1 = €441

uncertainty associated with the forecast is summarized by the variance of the
forecast error
2 2
Oii1e = var(et+1) = o2

. density forecast is the conditional probability density function of the process at the

future date; assuming ¢ is normally distributed we have

F(Yig1|It) ~ N+ 161 + 02e4-1,02)

. using the density forecast we can construct interval forecasts - since for

Z ~ N(0,1) we have P(—1.96 < Z < 1.96) = 0.95, the 95% interval forecast for
Yit1is

Htt1]t + 1-960t+1|t = (Mt+1|t - 1~96‘7t+1\t7m+1\t + 1~960t+1|t)
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6.3.2 MA(2) Process

for MA(2) model and forecasting horizon h = 2 we have

. optimal point forecast

Jt2 =ty = E(Yera|lt) = E(p + 142 + 016041 + O2e¢) = o+ Oaee

i. 2-period-ahead forecast error

et2 =Yiro — fro=p+epra+ 016041 +02e¢ — p— O2er = €442 + 16411

uncertainty associated with the forecast is summarized by the variance of the

forecast error
07 o) = var(er+2) = (1 +67)o?

iv. density forecast is the conditional probability density function of the process at the

future date; assuming £+ is normally distributed we have

F(Yega|Ie) ~ N(p+ O2e¢, (1 + 63)a2)
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6.3.2 MA(2) Process

» for MA(2) model and forecasting horizon h = s with s > 2 we have

optimal point forecast

Ttis = pigs)t = BEYeqs|lt) = p

i. s-period-ahead forecast error

ets = Yips — ft,s = 4 t4s + 0ct4s—1 — = t45 + 0160451 + 026452

uncertainty associated with the forecast is summarized by the variance of the
forecast error
2 2 2y 2
Oiislt = var(ei4+s) = (1 + 07 + 03)o0Z

. density forecast is the conditional probability density function of the process at the

future date; assuming ¢ is normally distributed we have

F(VegslIt) ~ N, (14 63 + 63)02)

forecasting with an MA(2) is thus limited by the short memory - for h > 2 the
optimal forecast is identical to the unconditional mean of the process
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6.3.2 MA(q) Process

> for MA(q) the AC and PAC functions satisfy similar properties as those for MA(2)
process

> first ¢ components in sample AC function are different from zero p;. # 0 for
k=1,2,...,q

» remaining autocorrelations are equal to zero pi, = 0 for k > ¢
sample PAC function decreases toward zero (in exponential or in oscillating pattern)

> forecasting with an MA(q) is quite limited - for h > ¢ the optimal forecast is
identical to the unconditional mean of the process
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6.3.2 MA(q) Process

Forecasting Growth of Employment in Nonfarm Business Sector

» download PRS85006013.csv obtained from fred.stlouisfed.org/series/PRS85006013,
import it into EViews as time series emp

> generate time series gemp as percentage change of emp

» AC and PAC suggest that MA(3) process y¢ = p+ e + 016¢—1 + O2e¢—2 + 03643
can be used to model gemp

> we will use 1947Q2-2014Q4 as estimation sample and 2015Q1-2018Q4 as
prediction sample

» we will thus construct forecast for h = 1,2,...,16 so 1-step to 16-step ahead
forecasts
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http://myweb.ttu.edu/jduras/files/teaching/eco4306/PRS85006013.csv
https://fred.stlouisfed.org/series/PRS85006013

6.3.2 MA(q) Process

> first, to estimate parameters pu, 01, 02,03 of the MA(3) process
Yyt =+ et + 01641 + O2e4—2 + 03613

in EViews choose Object — New Object — Equation, in equation specification
write gemp ¢ MA(1) MA(2) MA(3), and in sample write 1947Q2-2014Q4

» afterwards to create a multistep forecast in EViews open the equation and choose
Proc — Forecast, enter name gempf_se for standard deviation o 4; into “S.E.
(optional)”, change forecast sample to 2015Q1-2018Q4, and select “Dynamic
forecast” method in the forecast window

» to construct the lower and the upper bounds of the 95% confidence interval
(Btgnje — 1960 b5 eqn)e + 1.960, 4 p|¢) choose Object — Generate series set
sample to 2015Q1-2018Q4 and enter first gempf_Ilb = gempf - 1.96* gempf_se
and then the second time gempf_ub = gempf 4+ 1.96* gempf_se

P to construct time series with unconditional mean of gemp choose Object —
Generate Series and enter gemp_mean = @mean(gemp)
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