
Eco 4306 Economic and Business Forecasting
Chapter 6: Forecasting with Moving Average (MA) Processes
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Outline

I we now start building time series models
I first, we introduce white noise process, characterized by absence of linear time

dependence
I after that we will develop a moving average model for processes which do exhibit

some linear time dependence

2 / 32



6.1 A Model with No Dependence: White Noise

I a stationary stochastic process {εt} is called white noise process if ρk = 0 for
k ≥ 1, and rk = 0 for k ≥ 1, that is if autocorrelation and partial autocorrelation
functions are zero

I no linear dependence, autocorrelations are zero - no link between past and present
observations, no link between present and future observations

I no dependence to exploit so we cannot predict future realizations of the process -
εt is unpredictable shock, residual in our time series models
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6.1 A Model with No Dependence: White Noise
I consider stochastic process Yt = 1 + εt where εt ∼ N(0, 4)
I theoretical unconditional mean and variance of {Yt} are E(Yt) = E(1 + εt) = 1

and var(Yt) = var(1 + εt) = 4
I first two population moments are thus time invariant
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6.1 A Model with No Dependence: White Noise

I time series {yt} looks very ragged
I histogram for {yt} its has the expected bell shape corresponding to a normal

distribution
I skewness is approximately zero, kurtosis approximately 3, Jarque-Bera test

indicates that normality is not rejected (p = 0.351)
I first two sample moments are very close to the population moments - sample mean

is 0.96, sample standard deviation is 2.03
I time series plot shows that realizations bounce around a mean value of 1 and

volatility does not appear to change significantly
I AC function and PAC function at all lags are not significantly different from 0 at

5% level
I time series {yt} is thus a white noise process
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6.1 A Model with No Dependence: White Noise

I in business and economics some data behave very similarly to a white noise process
I white noise processes are especially common among financial series
I this is the reason why these data are so difficult to predict - they do not exhibit

any temporal linear dependence that could be consistently exploited
I for example: returns for individual stocks and for stock market indices have

correlograms that resemble a white noise process
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6.1 A Model with No Dependence: White Noise
I returns, Microsoft and DJ Index, 1986M4-2004M7, Figure06_02_MSFT_DJ.xls
I all lags of AC and PAC functions are not significantly different from 0 at 5% level
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http://myweb.ttu.edu/jduras/files/teaching/eco4306/Figure06_02_MSFT_DJ.xls


6.3 Forecasting with Moving Average Models

I a moving average process of order q, referred to as MA(q), has the form

Yt = µ+ εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q

where εt is a zero-mean white noise process
I order of the model is given by the largest lag, not by the number of lag variables in

the right-hand side
I for instance

Yt = µ+ εt + θ3εt−3

is an MA(3) because the largest lag is 3 although there is only one lagged variable
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6.3 Forecasting with Moving Average Models

I we will next look at the statistical properties of MA models
I our ultimate objective is constructing the optimal forecast
I we will analyze the lowest order process, MA(1), generalization to MA(q) is

straightforward
I three questions we want to answer

1. What does a time series of an MA process look like?
2. How do the AC and PAC functions for MA process look like?
3. What is the optimal forecast for an MA process?
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6.3.1 MA(1) Process
I consider MA(1) process Yt = µ+ εt + θεt−1

I four simulations, each 200 observations of MA(1), with different values of
θ ∈ {0.05, 0.5, 0.95, 2.0}, but with same µ = 2, and εt ∼ N(0, 0.25)
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6.3.1 MA(1) Process

I four time series seem to be weakly stationary
I unconditional population mean is time invariant

E(Yt) = E(µ+ εt + θεt−1) = µ

I unconditional variance is also time invariant

var(Yt) = E(Yt−E(Yt))2 = E(εt+θεt−1)2 = E(ε2
t+2θεtεt−1+θ2ε2

t−1) = (1+θ2)σ2
ε

and it is increasing with θ
I we still need to verify that the autocorrelation function does not depend on time to

claim that the process is covariance stationary
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6.3.1 MA(1) Process

I only ρ̂1 in the sample AC function is significantly different from zero
I ρ̂1 is proportional to θ for |θ| < 1 and its sign is the same as the sign of θ
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6.3.1 MA(1) Process

I population autocovariance of order 1

γ1 = E[(Yt − µ)(Yt−1 − µ)] = E[(εt + θεt−1)(εt−1 + θεt−2)] = θσ2
ε

I population autocorrelation of order 1

ρ1 =
γ1

γ0
=

θσ2
ε

(1 + θ2)σ2
ε

=
θ

1 + θ2

I population autocovariance of order k > 1

γk = E[(Yt − µ)(Yt−k − µ)] = E[(εt + θεt−1)(εt−k + θεt−k−1)] = 0

thus for population autocorrelation of order k > 1 we have

ρk =
γk

γ0
= 0

I so autocorrelation function really does not depend on time, and thus MA(1) is
covariance stationary process
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6.3.1 MA(1) Process

I note that AC function and PAC function for the MA(1) processes with θ = 0.5 and
θ = 2 are identical

I this is due to the fact that for the MA(1) with parameter θ̂ = 1
θ
we get

ρ1 =
θ̂

1 + θ̂2
=

1
θ

1 + 1
θ2

=
θ

θ2 + 1
=

θ

1 + θ2

I an MA(1) process is called invertible if |θ| < 1
I if an MA process is invertible, we can always find an autoregressive representation

in which the present Yt is a function of the past Yt−1, Yt−2, Yt−3, . . .
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6.3.1 MA(1) Process

I we will next analyze and forecast the percentage change in 5-Year Constant
Maturity Yield on Treasury Securities, using April 1953 to April 2008 sample

I data available at FRED https://fred.stlouisfed.org/graph/?g=mXGl and
Figure06_05_Table6_1_treasury.xls

I U.S. Treasury securities are considered to be the least risky assets
I they constitute an asset of reference to monitor the level of risk of other

fixed-income securities such as grade bonds and certificates of deposit
I risk spread - difference between the yield of the fixed-income security and the yield

of a corresponding Treasury security with the same maturity
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https://fred.stlouisfed.org/graph/?g=mXGl
http://myweb.ttu.edu/jduras/files/teaching/eco4306/Figure06_05_Table6_1_treasury.xls


6.3.1 MA(1) Process
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6.3.1 MA(1) Process

I AC function and PAC function similar to those for MA(1)
I AC function has only one positive spike at ρ̂1, remaining autocorrelations are not

significantly different from zero
I PAC function alternating signs, decreasing toward zero
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6.3.1 MA(1) Process

I recall: under quadratic loss function the optimal point forecast is conditional mean,
ft,h = µt+h|t = E(Yt+h|It)

I we next analyze this optimal forecast under quadratic loss function for h = 1, 2, . . .
I we will see that forecasting with an MA(1) is rather limited by the very short

memory of the process - for h > 1 the optimal forecast is identical to the
unconditional mean of the process
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6.3.1 MA(1) Process
I for MA(1) model and forecasting horizon h = 1 we have

i. optimal point forecast

ft,1 = µt+1|t = E(Yt+1|It) = E(µ+ εt+1 + θεt) = µ+ θεt

ii. 1-period-ahead forecast error

et,1 = Yt+1 − ft,1 = µ+ εt+1 + θεt − µ− θεt = εt+1

iii. uncertainty associated with the forecast is summarized by the variance of the
forecast error

σ2
t+1|t = var(et+1) = σ2

ε

iv. density forecast is the conditional probability density function of the process at the
future date; assuming εt is normally distributed we have

f(Yt+1|It) ∼ N(µ+ θεt, σ
2
ε)

v. using the density forecast we can construct interval forecasts - since for
Z ∼ N(0, 1) we have P (−1.96 ≤ Z ≤ 1.96) = 0.95, the 95% interval forecast for
Yt+1 is

µt+1|t ± 1.96σt+1|t = (µt+1|t − 1.96σt+1|t, µt+1|t + 1.96σt+1|t)
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6.3.1 MA(1) Process

I for MA(1) model and forecasting horizon h = 2 we have

i. optimal point forecast

ft,2 = µt+2|t = E(Yt+2|It) = E(µ+ εt+2 + θεt+1) = µ

ii. 2-period-ahead forecast error

et,2 = Yt+2 − ft,2 = µ+ εt+2 + θεt+1 − µ = εt+2 + θεt+1

iii. uncertainty associated with the forecast is summarized by the variance of the
forecast error

σ2
t+2|t = var(et+2) = (1 + θ2)σ2

ε

iv. density forecast is the conditional probability density function of the process at the
future date; assuming εt is normally distributed we have

f(Yt+2|It) ∼ N(µ, (1 + θ2)σ2
ε)
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6.3.1 MA(1) Process

I for MA(1) model and forecasting horizon h = s we have

i. optimal point forecast

ft,s = µt+s|t = E(Yt+s|It) = µ

ii. s-period-ahead forecast error

et,s = Yt+s − ft,s = µ+ εt+s + θεt+s−1 − µ = εt+s + θεt+s−1

iii. uncertainty associated with the forecast is summarized by the variance of the
forecast error

σ2
t+s|t = var(et+s) = (1 + θ2)σ2

ε

iv. density forecast is the conditional probability density function of the process at the
future date; assuming εt is normally distributed we have

f(Yt+s|It) ∼ N(µ, (1 + θ2)σ2
ε)
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6.3.1 MA(1) Process

Forecasting 5-year Constant Maturity Yield on Treasury Securities:
I AC and PAC suggest that the Percentage Change in 5-year Constant Maturity

Yield on Treasury Securities follows an MA(1) process
I we will use 1953M5-2007M11 as estimation sample and 2007M12-2008M4 as

prediction sample
I we will thus construct forecast for h = 1, 2, . . . , 5 so 1-step to 5-step ahead

forecasts
I to estimate θ in EViews choose Object → New Object → Equation, in equation

specification write dy c MA(1), and in sample 1953M5-2007M11
I afterwards to create a multistep forecast in EViews open the equation and choose

Proc → Forecast, enter name dyf_se for standard deviation σt+h|t into “S.E.
(optional)”, change forecast sample to 2007M12-2008M4, and select “Dynamic
forecast” method in the forecast window

I to construct the lower and the upper bounds of the 95% confidence interval
(µt+h|t − 1.96σt+h|t, µt+h|t + 1.96σt+h|t) choose Object → Generate series set
sample to 2007M12-2008M4 and enter first dyf_lb = dyf - 1.96∗dyf_se and then
the second time dyf_ub = dyf + 1.96∗dyf_se
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6.3.1 MA(1) Process

Forecasting 5-year Constant Maturity Yield on Treasury Securities:
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6.3.2 MA(2) Process
I consider now an MA(2) process Yt = µ+ εt + θ1εt−1 + θ2εt−2

I two simulations, each 200 observations of MA(2), with θ1 = 1.70, θ2 = 0.72 and
with θ1 = −1, θ2 = 0.25, in addition to µ = 2 and εt ∼ N(0, 0.25)

I unconditional population mean is time invariant
E(Yt) = E(µ+ εt + θ1εt−1 + θ2εt−2) = µ

I unconditional variance is also time invariant
var(Yt) = E(Yt − E(Yt))2 = E(εt + θ1εt−1 + θ2εt−2)2 = (1 + θ2

1 + θ2
2)σ2

ε
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6.3.2 MA(2) Process
I first two components in sample AC function are different from zero ρ̂1 6= 0, ρ̂2 6= 0,

remaining autocorrelations are equal to zero, ρ̂k = 0 for k > 2
I sample PAC function decreases toward zero
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6.3.2 MA(2) Process
I population autocovariance of order 1

γ1 = E[(Yt − µ)(Yt−1 − µ)] = (θ1 + θ1θ2)σ2
ε

thus for population autocorrelation of order 1 we have

ρ1 =
γ1

γ0
=

θ1 + θ1θ2

1 + θ2
1 + θ2

2

I population autocovariance of order k = 2

γ2 = E[(Yt − µ)(Yt−2 − µ)] = θ2σ
2
ε

thus for population autocorrelation of order k = 2 we have

ρ2 =
γ2

γ0
=

θ2

1 + θ2
1 + θ2

2

I autocorrelations of higher order are all equal to zero

γk = E[(Yt − µ)(Yt−k − µ)] = 0

thus for population autocorrelation of order k > 2 we have

ρk =
γk

γ0
= 0

I since autocorrelation function does not depend on time, MA(2) is covariance
stationary process
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6.3.2 MA(2) Process
I for MA(2) model and forecasting horizon h = 1 we have

i. optimal point forecast

ft,1 = µt+1|t = E(Yt+1|It) = E(µ+ εt+1 + θ1εt + θ2εt−1) = µ+ θ1εt + θ2εt−1

ii. 1-period-ahead forecast error

et,1 = Yt+1 − ft,1 = µ+ εt+1 + θ1εt + θ2εt−1 − µ− θ1εt − θ2εt−1 = εt+1

iii. uncertainty associated with the forecast is summarized by the variance of the
forecast error

σ2
t+1|t = var(et+1) = σ2

ε

iv. density forecast is the conditional probability density function of the process at the
future date; assuming εt is normally distributed we have

f(Yt+1|It) ∼ N(µ+ θ1εt + θ2εt−1, σ
2
ε)

v. using the density forecast we can construct interval forecasts - since for
Z ∼ N(0, 1) we have P (−1.96 ≤ Z ≤ 1.96) = 0.95, the 95% interval forecast for
Yt+1 is

µt+1|t ± 1.96σt+1|t = (µt+1|t − 1.96σt+1|t, µt+1|t + 1.96σt+1|t)
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6.3.2 MA(2) Process

I for MA(2) model and forecasting horizon h = 2 we have

i. optimal point forecast

ft,2 = µt+2|t = E(Yt+2|It) = E(µ+ εt+2 + θ1εt+1 + θ2εt) = µ+ θ2εt

ii. 2-period-ahead forecast error

et,2 = Yt+2 − ft,2 = µ+ εt+2 + θ1εt+1 + θ2εt − µ− θ2εt = εt+2 + θ1εt+1

iii. uncertainty associated with the forecast is summarized by the variance of the
forecast error

σ2
t+2|t = var(et+2) = (1 + θ2

1)σ2
ε

iv. density forecast is the conditional probability density function of the process at the
future date; assuming εt is normally distributed we have

f(Yt+2|It) ∼ N(µ+ θ2εt, (1 + θ2
1)σ2

ε)
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6.3.2 MA(2) Process

I for MA(2) model and forecasting horizon h = s with s > 2 we have

i. optimal point forecast

ft,s = µt+s|t = E(Yt+s|It) = µ

ii. s-period-ahead forecast error

et,s = Yt+s − ft,s = µ+ εt+s + θεt+s−1 − µ = εt+s + θ1εt+s−1 + θ2εt+s−2

iii. uncertainty associated with the forecast is summarized by the variance of the
forecast error

σ2
t+s|t = var(et+s) = (1 + θ2

1 + θ2
2)σ2

ε

iv. density forecast is the conditional probability density function of the process at the
future date; assuming εt is normally distributed we have

f(Yt+s|It) ∼ N(µ, (1 + θ2
1 + θ2

2)σ2
ε)

I forecasting with an MA(2) is thus limited by the short memory - for h > 2 the
optimal forecast is identical to the unconditional mean of the process
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6.3.2 MA(q) Process

I for MA(q) the AC and PAC functions satisfy similar properties as those for MA(2)
process

I first q components in sample AC function are different from zero ρ̂k 6= 0 for
k = 1, 2, . . . , q

I remaining autocorrelations are equal to zero ρ̂k = 0 for k > q

I sample PAC function decreases toward zero (in exponential or in oscillating pattern)
I forecasting with an MA(q) is quite limited - for h > q the optimal forecast is

identical to the unconditional mean of the process
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6.3.2 MA(q) Process

Forecasting Growth of Employment in Nonfarm Business Sector
I download PRS85006013.csv obtained from fred.stlouisfed.org/series/PRS85006013,

import it into EViews as time series emp

I generate time series gemp as percentage change of emp

I AC and PAC suggest that MA(3) process yt = µ+ εt + θ1εt−1 + θ2εt−2 + θ3εt−3
can be used to model gemp

I we will use 1947Q2-2014Q4 as estimation sample and 2015Q1-2018Q4 as
prediction sample

I we will thus construct forecast for h = 1, 2, . . . , 16 so 1-step to 16-step ahead
forecasts
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http://myweb.ttu.edu/jduras/files/teaching/eco4306/PRS85006013.csv
https://fred.stlouisfed.org/series/PRS85006013


6.3.2 MA(q) Process

I first, to estimate parameters µ, θ1, θ2, θ3 of the MA(3) process

yt = µ+ εt + θ1εt−1 + θ2εt−2 + θ3εt−3

in EViews choose Object → New Object → Equation, in equation specification
write gemp c MA(1) MA(2) MA(3), and in sample write 1947Q2-2014Q4

I afterwards to create a multistep forecast in EViews open the equation and choose
Proc → Forecast, enter name gempf_se for standard deviation σt+h|t into “S.E.
(optional)”, change forecast sample to 2015Q1-2018Q4, and select “Dynamic
forecast” method in the forecast window

I to construct the lower and the upper bounds of the 95% confidence interval
(µt+h|t − 1.96σt+h|t, µt+h|t + 1.96σt+h|t) choose Object → Generate series set
sample to 2015Q1-2018Q4 and enter first gempf_lb = gempf - 1.96∗gempf_se
and then the second time gempf_ub = gempf + 1.96∗gempf_se

I to construct time series with unconditional mean of gemp choose Object →
Generate Series and enter gemp_mean = @mean(gemp)
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