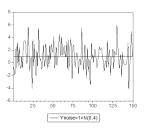
Eco 4306 Economic and Business Forecasting Chapter 6: Forecasting with Moving Average (MA) Processes

Outline

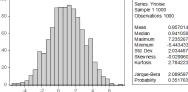
- we now start building time series models
- first, we introduce white noise process, characterized by absence of linear time dependence
- after that we will develop a moving average model for processes which do exhibit some linear time dependence

- ▶ a stationary stochastic process $\{\varepsilon_t\}$ is called white noise process if $\rho_k = 0$ for $k \ge 1$, and $r_k = 0$ for $k \ge 1$, that is if autocorrelation and partial autocorrelation functions are zero
- no linear dependence, autocorrelations are zero no link between past and present observations, no link between present and future observations
- no dependence to exploit so we cannot predict future realizations of the process ε_t is unpredictable shock, residual in our time series models

- consider stochastic process $Y_t = 1 + \varepsilon_t$ where $\varepsilon_t \sim N(0, 4)$
- ▶ theoretical unconditional mean and variance of $\{Y_t\}$ are $E(Y_t) = E(1 + \varepsilon_t) = 1$ and $var(Y_t) = var(1 + \varepsilon_t) = 4$
- first two population moments are thus time invariant



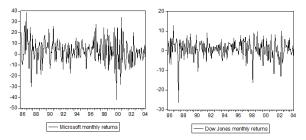
Autocorrelation	Partial Correlation		AC	PAC
		2 3 4 5 6 7 8 9 10 11 12 13	-0.013 -0.066 -0.027 -0.004 -0.004 -0.004 0.056 -0.001 0.026 0.018 -0.030 -0.030 -0.013 0.001 0.040	-0.026 -0.009 0.004 0.035
Sam	es: Ynoise ple 1 1000 ervations 1000	16	0.043	



- time series $\{y_t\}$ looks very ragged
- \blacktriangleright histogram for $\{y_t\}$ its has the expected bell shape corresponding to a normal distribution
- **>** skewness is approximately zero, kurtosis approximately 3, Jarque-Bera test indicates that normality is not rejected (p = 0.351)
- first two sample moments are very close to the population moments sample mean is 0.96, sample standard deviation is 2.03
- time series plot shows that realizations bounce around a mean value of 1 and volatility does not appear to change significantly
- AC function and PAC function at all lags are not significantly different from 0 at 5% level
- time series $\{y_t\}$ is thus a white noise process

- in business and economics some data behave very similarly to a white noise process
- white noise processes are especially common among financial series
- this is the reason why these data are so difficult to predict they do not exhibit any temporal linear dependence that could be consistently exploited
- for example: returns for individual stocks and for stock market indices have correlograms that resemble a white noise process

- returns, Microsoft and DJ Index, 1986M4-2004M7, Figure06_02_MSFT_DJ.xls
- ▶ all lags of AC and PAC functions are not significantly different from 0 at 5% level



Sample: 1986:03 2004:07 Included observations: 220							
Autocorrelation	Partial Correlation	AC PAC					
		$\begin{array}{c} 1 & -0.081 & -0.081 \\ 2 & -0.094 & -0.101 \\ 3 & 0.132 & 0.117 \\ 4 & -0.017 & -0.006 \\ 5 & 0.003 & 0.0039 \\ 6 & -0.018 & -0.005 \\ 0 & -0.016 & 0.0039 \\ 0 & -0.016 & 0.0031 \\ 0 & -0.016 & 0.0031 \\ 10 & -0.013 & 0.005 \\ 13 & -0.020 & -0.045 \\ 12 & -0.016 & 0.0051 \\ 13 & -0.020 & -0.045 \\ 13 & -0.020 & -0.045 \\ 13 & -0.020 & -0.045 \\ 13 & -0.020 & -0.045 \\ 13 & -0.020 & -0.045 \\ 13 & -0.020 & -0.045 \\ 13 & -0.020 & -0.045 \\ 13 & -0.020 & -0.045 \\ 13 & -0.020 & -0.045 \\ 13 & -0.020 & -0.045 \\ 14 & -0.030 & -0.051 \\ 15 & -0.075 & -0.091 \\ 16 & -0.064 & -0.064 \\ 19 & -0.049 & -0.079 \\ 20 & 0.046 & 0.005 \end{array}$					

Sample: 1986:03 2004:07 Included observations: 220							
Autocorrelation	Partial Correlation	AC PAC					
		$\left \begin{array}{c} 1 & -0 & 021 \\ 2 & -0 & 044 \\ -0 & 044 \\ 3 & -0 & 566 \\ -0 & 058 \\ 4 & -0 & 1266 \\ -0 & 031 \\ -0 & 048 \\ -0 & 041 \\ -0 & 043 \\ -0 & 044 \\ -0 & 037 \\ -0 & 043 \\ -0 & 044 \\ -0 & 037 \\ -0 & 043 \\ -0 & 033 \\ -0 & 043 \\ -0 & 033 \\ -0 & 043 \\ -0 & 033 \\ -0 & 043 \\ -0 & 033 \\ -0 & 043 \\ -0 & 03$					
		18 0.079 0.076 19 -0.026 -0.028 20 -0.016 0.005					

6.3 Forecasting with Moving Average Models

• a moving average process of order q, referred to as MA(q), has the form

$$Y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \ldots + \theta_q \varepsilon_{t-q}$$

where ε_t is a zero-mean white noise process

order of the model is given by the largest lag, not by the number of lag variables in the right-hand side

for instance

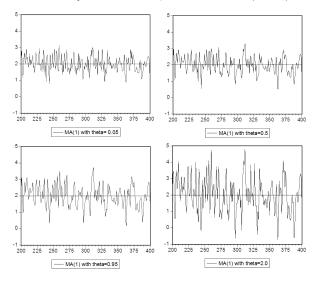
$$Y_t = \mu + \varepsilon_t + \theta_3 \varepsilon_{t-3}$$

is an MA(3) because the largest lag is 3 although there is only one lagged variable

6.3 Forecasting with Moving Average Models

- we will next look at the statistical properties of MA models
- our ultimate objective is constructing the optimal forecast
- we will analyze the lowest order process, MA(1), generalization to MA(q) is straightforward
- three questions we want to answer
 - 1. What does a time series of an MA process look like?
 - 2. How do the AC and PAC functions for MA process look like?
 - 3. What is the optimal forecast for an MA process?

- consider MA(1) process $Y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$
- ▶ four simulations, each 200 observations of MA(1), with different values of $\theta \in \{0.05, 0.5, 0.95, 2.0\}$, but with same $\mu = 2$, and $\varepsilon_t \sim N(0, 0.25)$



four time series seem to be weakly stationary

unconditional population mean is time invariant

$$E(Y_t) = E(\mu + \varepsilon_t + \theta \varepsilon_{t-1}) = \mu$$

unconditional variance is also time invariant

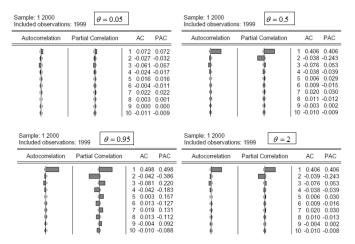
$$var(Y_t) = E(Y_t - E(Y_t))^2 = E(\varepsilon_t + \theta \varepsilon_{t-1})^2 = E(\varepsilon_t^2 + 2\theta \varepsilon_t \varepsilon_{t-1} + \theta^2 \varepsilon_{t-1}^2) = (1 + \theta^2)\sigma_{\varepsilon}^2$$

and it is increasing with $\boldsymbol{\theta}$

we still need to verify that the autocorrelation function does not depend on time to claim that the process is covariance stationary

• only $\hat{\rho}_1$ in the sample AC function is significantly different from zero

• $\hat{\rho}_1$ is proportional to θ for $|\theta| < 1$ and its sign is the same as the sign of θ



population autocovariance of order 1

$$\gamma_1 = E[(Y_t - \mu)(Y_{t-1} - \mu)] = E[(\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-1} + \theta \varepsilon_{t-2})] = \theta \sigma_{\varepsilon}^2$$

population autocorrelation of order 1

$$\rho_1 = \frac{\gamma_1}{\gamma_0} = \frac{\theta \sigma_{\varepsilon}^2}{(1+\theta^2)\sigma_{\varepsilon}^2} = \frac{\theta}{1+\theta^2}$$

• population autocovariance of order k > 1

$$\gamma_k = E[(Y_t - \mu)(Y_{t-k} - \mu)] = E[(\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-k} + \theta \varepsilon_{t-k-1})] = 0$$

thus for population autocorrelation of order $k>1\ \mathrm{we}$ have

$$\rho_k = \frac{\gamma_k}{\gamma_0} = 0$$

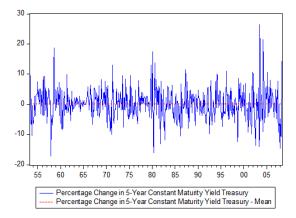
so autocorrelation function really does not depend on time, and thus MA(1) is covariance stationary process

- ▶ note that AC function and PAC function for the MA(1) processes with $\theta = 0.5$ and $\theta = 2$ are identical
- ▶ this is due to the fact that for the MA(1) with parameter $\hat{\theta} = \frac{1}{\theta}$ we get

$$\rho_1 = \frac{\hat{\theta}}{1+\hat{\theta}^2} = \frac{\frac{1}{\theta}}{1+\frac{1}{\theta^2}} = \frac{\theta}{\theta^2+1} = \frac{\theta}{1+\theta^2}$$

- an MA(1) process is called **invertible** if $|\theta| < 1$
- ▶ if an MA process is invertible, we can always find an autoregressive representation in which the present Y_t is a function of the past $Y_{t-1}, Y_{t-2}, Y_{t-3}, ...$

- we will next analyze and forecast the percentage change in 5-Year Constant Maturity Yield on Treasury Securities, using April 1953 to April 2008 sample
- data available at FRED https://fred.stlouisfed.org/graph/?g=mXGl and Figure06_05_Table6_1_treasury.xls
- U.S. Treasury securities are considered to be the least risky assets
- they constitute an asset of reference to monitor the level of risk of other fixed-income securities such as grade bonds and certificates of deposit
- risk spread difference between the yield of the fixed-income security and the yield of a corresponding Treasury security with the same maturity



- ► AC function and PAC function similar to those for MA(1)
- AC function has only one positive spike at ρ̂₁, remaining autocorrelations are not significantly different from zero
- PAC function alternating signs, decreasing toward zero

Date: 02/07/18 Time: 22:03 Sample: 1953M05 2008M04 Included observations: 660

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.332	0.332	72.915	0.000
d,		2	-0.053	-0.183	74.786	0.000
- h		3	0.002	0.097	74.789	0.000
փ	1 10	4	0.022	-0.027	75.108	0.000
ı (li	1 10	5	-0.042	-0.042	76.278	0.000
d)	(l)	6	-0.060	-0.029	78.664	0.000
d,	()	7	-0.070	-0.058	81.958	0.000
փ	j	8	0.025	0.075	82.362	0.000
- p	ի փի	9	0.080	0.038	86.667	0.000
ւի	ili	10	0.036	0.005	87.563	0.000
վի	ի փի	11	0.029	0.033	88.126	0.000
	•	12	-0.044	-0.089	89.448	0.000

- ▶ recall: under quadratic loss function the optimal point forecast is conditional mean, $f_{t,h} = \mu_{t+h|t} = E(Y_{t+h}|I_t)$
- we next analyze this optimal forecast under quadratic loss function for h = 1, 2, ...
- we will see that forecasting with an MA(1) is rather limited by the very short memory of the process - for h > 1 the optimal forecast is identical to the unconditional mean of the process

• for MA(1) model and forecasting horizon h = 1 we have

i. optimal point forecast

$$f_{t,1} = \mu_{t+1|t} = E(Y_{t+1}|I_t) = E(\mu + \varepsilon_{t+1} + \theta\varepsilon_t) = \mu + \theta\varepsilon_t$$

ii. 1-period-ahead forecast error

$$e_{t,1} = Y_{t+1} - f_{t,1} = \mu + \varepsilon_{t+1} + \theta \varepsilon_t - \mu - \theta \varepsilon_t = \varepsilon_{t+1}$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$\sigma_{t+1|t}^2 = var(e_{t+1}) = \sigma_{\varepsilon}^2$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming ε_t is normally distributed we have

$$f(Y_{t+1}|I_t) \sim N(\mu + \theta \varepsilon_t, \sigma_{\varepsilon}^2)$$

v. using the density forecast we can construct interval forecasts - since for $Z\sim N(0,1)$ we have $P(-1.96\leq Z\leq 1.96)=0.95,$ the 95% interval forecast for Y_{t+1} is

$$\mu_{t+1|t} \pm 1.96\sigma_{t+1|t} = (\mu_{t+1|t} - 1.96\sigma_{t+1|t}, \mu_{t+1|t} + 1.96\sigma_{t+1|t})$$

- for MA(1) model and forecasting horizon h = 2 we have
- i. optimal point forecast

$$f_{t,2} = \mu_{t+2|t} = E(Y_{t+2}|I_t) = E(\mu + \varepsilon_{t+2} + \theta \varepsilon_{t+1}) = \mu$$

ii. 2-period-ahead forecast error

$$e_{t,2} = Y_{t+2} - f_{t,2} = \mu + \varepsilon_{t+2} + \theta \varepsilon_{t+1} - \mu = \varepsilon_{t+2} + \theta \varepsilon_{t+1}$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$\sigma_{t+2|t}^2 = var(e_{t+2}) = (1+\theta^2)\sigma_{\varepsilon}^2$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming ε_t is normally distributed we have

$$f(Y_{t+2}|I_t) \sim N(\mu, (1+\theta^2)\sigma_{\varepsilon}^2)$$

- for MA(1) model and forecasting horizon h = s we have
- i. optimal point forecast

$$f_{t,s} = \mu_{t+s|t} = E(Y_{t+s}|I_t) = \mu$$

ii. s-period-ahead forecast error

$$e_{t,s} = Y_{t+s} - f_{t,s} = \mu + \varepsilon_{t+s} + \theta \varepsilon_{t+s-1} - \mu = \varepsilon_{t+s} + \theta \varepsilon_{t+s-1}$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$\sigma_{t+s|t}^2 = var(e_{t+s}) = (1+\theta^2)\sigma_{\varepsilon}^2$$

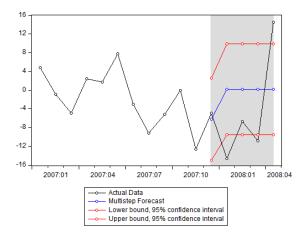
iv. density forecast is the conditional probability density function of the process at the future date; assuming ε_t is normally distributed we have

$$f(Y_{t+s}|I_t) \sim N(\mu, (1+\theta^2)\sigma_{\varepsilon}^2)$$

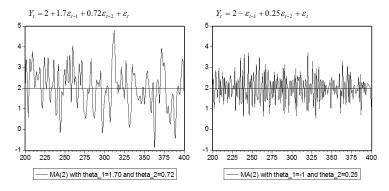
Forecasting 5-year Constant Maturity Yield on Treasury Securities:

- AC and PAC suggest that the Percentage Change in 5-year Constant Maturity Yield on Treasury Securities follows an MA(1) process
- we will use 1953M5-2007M11 as estimation sample and 2007M12-2008M4 as prediction sample
- \blacktriangleright we will thus construct forecast for $h=1,2,\ldots,5$ so 1-step to 5-step ahead forecasts
- b to estimate θ in EViews choose Object → New Object → Equation, in equation specification write dy c MA(1), and in sample 1953M5-2007M11
- ▶ afterwards to create a multistep forecast in EViews open the equation and choose **Proc** → **Forecast**, enter name dyf_se for standard deviation $\sigma_{t+h|t}$ into "S.E. (optional)", change forecast sample to 2007M12-2008M4, and select "Dynamic forecast" method in the forecast window
- ▶ to construct the lower and the upper bounds of the 95% confidence interval $(\mu_{t+h|t} 1.96\sigma_{t+h|t}, \mu_{t+h|t} + 1.96\sigma_{t+h|t})$ choose **Object** → **Generate series** set sample to 2007M12-2008M4 and enter first **dyf_lb = dyf 1.96*dyf_se** and then the second time **dyf_ub = dyf + 1.96*dyf_se**

Forecasting 5-year Constant Maturity Yield on Treasury Securities:



- consider now an MA(2) process $Y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$
- two simulations, each 200 observations of MA(2), with $\theta_1 = 1.70, \theta_2 = 0.72$ and with $\theta_1 = -1, \theta_2 = 0.25$, in addition to $\mu = 2$ and $\varepsilon_t \sim N(0, 0.25)$

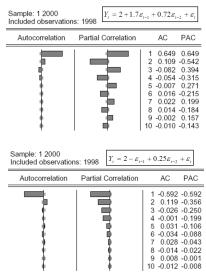


unconditional population mean is time invariant

$$E(Y_t) = E(\mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}) = \mu$$

• unconditional variance is also time invariant $var(Y_t) = E(Y_t - E(Y_t))^2 = E(\varepsilon_t + \theta_1\varepsilon_{t-1} + \theta_2\varepsilon_{t-2})^2 = (1 + \theta_1^2 + \theta_2^2)\sigma_{\varepsilon}^2$

- First two components in sample AC function are different from zero $\hat{\rho}_1 \neq 0$, $\hat{\rho}_2 \neq 0$, remaining autocorrelations are equal to zero, $\hat{\rho}_k = 0$ for k > 2
- sample PAC function decreases toward zero



population autocovariance of order 1

$$\gamma_1 = E[(Y_t - \mu)(Y_{t-1} - \mu)] = (\theta_1 + \theta_1 \theta_2)\sigma_{\varepsilon}^2$$

thus for population autocorrelation of order 1 we have

$$\rho_1 = \frac{\gamma_1}{\gamma_0} = \frac{\theta_1 + \theta_1 \theta_2}{1 + \theta_1^2 + \theta_2^2}$$

• population autocovariance of order k = 2

$$\gamma_2 = E[(Y_t - \mu)(Y_{t-2} - \mu)] = \theta_2 \sigma_{\varepsilon}^2$$

thus for population autocorrelation of order $\boldsymbol{k}=2$ we have

$$\rho_2 = \frac{\gamma_2}{\gamma_0} = \frac{\theta_2}{1 + \theta_1^2 + \theta_2^2}$$

autocorrelations of higher order are all equal to zero

$$\gamma_k = E[(Y_t - \mu)(Y_{t-k} - \mu)] = 0$$

thus for population autocorrelation of order $k>2\ \mathrm{we}$ have

$$\rho_k = \frac{\gamma_k}{\gamma_0} = 0$$

since autocorrelation function does not depend on time, MA(2) is covariance stationary process

- for MA(2) model and forecasting horizon h = 1 we have
- i. optimal point forecast

 $f_{t,1} = \mu_{t+1|t} = E(Y_{t+1}|I_t) = E(\mu + \varepsilon_{t+1} + \theta_1\varepsilon_t + \theta_2\varepsilon_{t-1}) = \mu + \theta_1\varepsilon_t + \theta_2\varepsilon_{t-1}$

ii. 1-period-ahead forecast error

$$e_{t,1} = Y_{t+1} - f_{t,1} = \mu + \varepsilon_{t+1} + \theta_1 \varepsilon_t + \theta_2 \varepsilon_{t-1} - \mu - \theta_1 \varepsilon_t - \theta_2 \varepsilon_{t-1} = \varepsilon_{t+1}$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$\sigma_{t+1|t}^2 = var(e_{t+1}) = \sigma_{\varepsilon}^2$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming ε_t is normally distributed we have

$$f(Y_{t+1}|I_t) \sim N(\mu + \theta_1 \varepsilon_t + \theta_2 \varepsilon_{t-1}, \sigma_{\varepsilon}^2)$$

v. using the density forecast we can construct interval forecasts - since for $Z\sim N(0,1)$ we have $P(-1.96\leq Z\leq 1.96)=0.95,$ the 95% interval forecast for Y_{t+1} is

$$\mu_{t+1|t} \pm 1.96\sigma_{t+1|t} = (\mu_{t+1|t} - 1.96\sigma_{t+1|t}, \mu_{t+1|t} + 1.96\sigma_{t+1|t})$$

- for MA(2) model and forecasting horizon h = 2 we have
- i. optimal point forecast

$$f_{t,2} = \mu_{t+2|t} = E(Y_{t+2}|I_t) = E(\mu + \varepsilon_{t+2} + \theta_1\varepsilon_{t+1} + \theta_2\varepsilon_t) = \mu + \theta_2\varepsilon_t$$

ii. 2-period-ahead forecast error

$$e_{t,2} = Y_{t+2} - f_{t,2} = \mu + \varepsilon_{t+2} + \theta_1 \varepsilon_{t+1} + \theta_2 \varepsilon_t - \mu - \theta_2 \varepsilon_t = \varepsilon_{t+2} + \theta_1 \varepsilon_{t+1}$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$\sigma_{t+2|t}^2 = var(e_{t+2}) = (1+\theta_1^2)\sigma_{\varepsilon}^2$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming ε_t is normally distributed we have

$$f(Y_{t+2}|I_t) \sim N(\mu + \theta_2 \varepsilon_t, (1+\theta_1^2)\sigma_{\varepsilon}^2)$$

- for MA(2) model and forecasting horizon h = s with s > 2 we have
- i. optimal point forecast

$$f_{t,s} = \mu_{t+s|t} = E(Y_{t+s}|I_t) = \mu$$

ii. s-period-ahead forecast error

$$e_{t,s} = Y_{t+s} - f_{t,s} = \mu + \varepsilon_{t+s} + \theta \varepsilon_{t+s-1} - \mu = \varepsilon_{t+s} + \theta_1 \varepsilon_{t+s-1} + \theta_2 \varepsilon_{t+s-2}$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$\sigma_{t+s|t}^2 = var(e_{t+s}) = (1 + \theta_1^2 + \theta_2^2)\sigma_{\varepsilon}^2$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming ε_t is normally distributed we have

$$f(Y_{t+s}|I_t) \sim N(\mu, (1+\theta_1^2+\theta_2^2)\sigma_{\varepsilon}^2)$$

▶ forecasting with an MA(2) is thus limited by the short memory - for *h* > 2 the optimal forecast is identical to the unconditional mean of the process

- for MA(q) the AC and PAC functions satisfy similar properties as those for MA(2) process
- First q components in sample AC function are different from zero $\hat{\rho}_k \neq 0$ for $k = 1, 2, \ldots, q$
- remaining autocorrelations are equal to zero $\hat{\rho}_k = 0$ for k > q
- sample PAC function decreases toward zero (in exponential or in oscillating pattern)
- forecasting with an MA(q) is quite limited for h > q the optimal forecast is identical to the unconditional mean of the process

Forecasting Growth of Employment in Nonfarm Business Sector

- download PRS85006013.csv obtained from fred.stlouisfed.org/series/PRS85006013, import it into EViews as time series emp
- generate time series gemp as percentage change of emp
- AC and PAC suggest that MA(3) process $y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \theta_3 \varepsilon_{t-3}$ can be used to model gemp
- we will use 1947Q2-2014Q4 as estimation sample and 2015Q1-2018Q4 as prediction sample
- \blacktriangleright we will thus construct forecast for $h=1,2,\ldots,16$ so 1-step to 16-step ahead forecasts

• first, to estimate parameters μ , θ_1 , θ_2 , θ_3 of the MA(3) process

$$y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \theta_3 \varepsilon_{t-3}$$

in EViews choose Object \rightarrow New Object \rightarrow Equation, in equation specification write gemp c MA(1) MA(2) MA(3), and in sample write 1947Q2-2014Q4

- ▶ afterwards to create a multistep forecast in EViews open the equation and choose **Proc** → **Forecast**, enter name gempf_se for standard deviation $\sigma_{t+h|t}$ into "S.E. (optional)", change forecast sample to 2015Q1-2018Q4, and select "Dynamic forecast" method in the forecast window
- ▶ to construct the lower and the upper bounds of the 95% confidence interval $(\mu_{t+h|t} 1.96\sigma_{t+h|t}, \mu_{t+h|t} + 1.96\sigma_{t+h|t})$ choose **Object** → **Generate series** set sample to 2015Q1-2018Q4 and enter first gempf_lb = gempf 1.96*gempf_se and then the second time gempf_ub = gempf + 1.96*gempf_se
- ▶ to construct time series with unconditional mean of gemp choose Object → Generate Series and enter gemp_mean = @mean(gemp)