Eco 4306 Economic and Business Forecasting Chapter 6: Forecasting with Moving Average (MA) Processes

Outline

- \triangleright we now start building time series models
- **If instend in the introduce white noise process**, characterized by absence of linear time dependence
- **E** after that we will develop a **moving average model** for processes which do exhibit some linear time dependence

- **I** a stationary stochastic process $\{\varepsilon_t\}$ is called white noise process if $\rho_k = 0$ for $k \geq 1$, and $r_k = 0$ for $k \geq 1$, that is if autocorrelation and partial autocorrelation functions are zero
- \triangleright no linear dependence, autocorrelations are zero no link between past and present observations, no link between present and future observations
- \triangleright no dependence to exploit so we cannot predict future realizations of the process *εt* is unpredictable shock, residual in our time series models

- \triangleright consider stochastic process $Y_t = 1 + \varepsilon_t$ where $\varepsilon_t \sim N(0, 4)$
- **I** theoretical unconditional mean and variance of ${Y_t}$ are $E(Y_t) = E(1 + \varepsilon_t) = 1$ and $var(Y_t) = var(1 + \varepsilon_t) = 4$
- \triangleright first two population moments are thus time invariant

- ime series $\{y_t\}$ looks very ragged
- In histogram for $\{y_t\}$ its has the expected bell shape corresponding to a normal distribution
- \blacktriangleright skewness is approximately zero, kurtosis approximately 3, Jarque-Bera test indicates that normality is not rejected $(p = 0.351)$
- \triangleright first two sample moments are very close to the population moments sample mean is 0.96, sample standard deviation is 2.03
- \triangleright time series plot shows that realizations bounce around a mean value of 1 and volatility does not appear to change significantly
- \triangleright AC function and PAC function at all lags are not significantly different from 0 at 5% level
- ightharpoonup time series $\{y_t\}$ is thus a white noise process

- \blacktriangleright in business and economics some data behave very similarly to a white noise process
- \triangleright white noise processes are especially common among financial series
- \triangleright this is the reason why these data are so difficult to predict they do not exhibit any temporal linear dependence that could be consistently exploited
- \blacktriangleright for example: returns for individual stocks and for stock market indices have correlograms that resemble a white noise process

▶ returns, Microsoft and DJ Index, 1986M4-2004M7, [Figure06_02_MSFT_DJ.xls](http://myweb.ttu.edu/jduras/files/teaching/eco4306/Figure06_02_MSFT_DJ.xls)

 \blacktriangleright all lags of AC and PAC functions are not significantly different from 0 at 5% level

6.3 Forecasting with Moving Average Models

E a **moving average process of order** *q*, referred to as $MA(q)$, has the form

$$
Y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \ldots + \theta_q \varepsilon_{t-q}
$$

where *εt* is a zero-mean white noise process

 \triangleright order of the model is given by the largest lag, not by the number of lag variables in the right-hand side

 \blacktriangleright for instance

$$
Y_t = \mu + \varepsilon_t + \theta_3 \varepsilon_{t-3}
$$

is an MA(3) because the largest lag is 3 although there is only one lagged variable

6.3 Forecasting with Moving Average Models

- \triangleright we will next look at the statistical properties of MA models
- \triangleright our ultimate objective is constructing the optimal forecast
- ightharpoonup we will analyze the lowest order process, $MA(1)$, generalization to $MA(q)$ is straightforward
- \blacktriangleright three questions we want to answer
	- 1. What does a time series of an MA process look like?
	- 2. How do the AC and PAC functions for MA process look like?
	- 3. What is the optimal forecast for an MA process?

- \blacktriangleright consider MA(1) process $Y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$
- \triangleright four simulations, each 200 observations of MA(1), with different values of *θ* ∈ {0.05*,* 0.5*,* 0.95*,* 2.0}, but with same $\mu = 2$, and ε_t ∼ $N(0, 0.25)$

 \triangleright four time series seem to be weakly stationary

 \blacktriangleright unconditional population mean is time invariant

$$
E(Y_t) = E(\mu + \varepsilon_t + \theta \varepsilon_{t-1}) = \mu
$$

 \blacktriangleright unconditional variance is also time invariant

$$
var(Y_t) = E(Y_t - E(Y_t))^2 = E(\varepsilon_t + \theta \varepsilon_{t-1})^2 = E(\varepsilon_t^2 + 2\theta \varepsilon_t \varepsilon_{t-1} + \theta^2 \varepsilon_{t-1}^2) = (1 + \theta^2)\sigma_{\varepsilon}^2
$$

and it is increasing with *θ*

 \blacktriangleright we still need to verify that the autocorrelation function does not depend on time to claim that the process is covariance stationary

 \triangleright only $\hat{\rho}_1$ in the sample AC function is significantly different from zero

 \triangleright $\hat{\rho}_1$ is proportional to θ for $|\theta|$ < 1 and its sign is the same as the sign of θ

population autocovariance of order 1

$$
\gamma_1 = E[(Y_t - \mu)(Y_{t-1} - \mu)] = E[(\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-1} + \theta \varepsilon_{t-2})] = \theta \sigma_{\varepsilon}^2
$$

population autocorrelation of order 1

$$
\rho_1 = \frac{\gamma_1}{\gamma_0} = \frac{\theta \sigma_{\varepsilon}^2}{(1 + \theta^2)\sigma_{\varepsilon}^2} = \frac{\theta}{1 + \theta^2}
$$

population autocovariance of order $k > 1$

$$
\gamma_k = E[(Y_t - \mu)(Y_{t-k} - \mu)] = E[(\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-k} + \theta \varepsilon_{t-k-1})] = 0
$$

thus for population autocorrelation of order *k >* 1 we have

$$
\rho_k=\frac{\gamma_k}{\gamma_0}=0
$$

is so autocorrelation function really does not depend on time, and thus $MA(1)$ is covariance stationary process

- **If** note that AC function and PAC function for the MA(1) processes with $\theta = 0.5$ and $\theta = 2$ are identical
- \blacktriangleright this is due to the fact that for the MA(1) with parameter $\hat{\theta} = \frac{1}{\theta}$ we get

$$
\rho_1 = \frac{\hat{\theta}}{1 + \hat{\theta}^2} = \frac{\frac{1}{\theta}}{1 + \frac{1}{\theta^2}} = \frac{\theta}{\theta^2 + 1} = \frac{\theta}{1 + \theta^2}
$$

- \blacktriangleright an MA(1) process is called **invertible** if $|\theta| < 1$
- \triangleright if an MA process is invertible, we can always find an autoregressive representation in which the present Y_t is a function of the past $Y_{t-1}, Y_{t-2}, Y_{t-3}, \ldots$

- \triangleright we will next analyze and forecast the percentage change in 5-Year Constant Maturity Yield on Treasury Securities, using April 1953 to April 2008 sample
- data available at FRED <https://fred.stlouisfed.org/graph/?g=mXGl> and **[Figure06_05_Table6_1_treasury.xls](http://myweb.ttu.edu/jduras/files/teaching/eco4306/Figure06_05_Table6_1_treasury.xls)**
- \triangleright U.S. Treasury securities are considered to be the least risky assets
- \blacktriangleright they constitute an asset of reference to monitor the level of risk of other fixed-income securities such as grade bonds and certificates of deposit
- \triangleright risk spread difference between the yield of the fixed-income security and the yield of a corresponding Treasury security with the same maturity

- \triangleright AC function and PAC function similar to those for MA(1)
- **►** AC function has only one positive spike at $\hat{\rho}_1$, remaining autocorrelations are not significantly different from zero
- \blacktriangleright PAC function alternating signs, decreasing toward zero

Date: 02/07/18 Time: 22:03 Sample: 1953M05 2008M04 Included observations: 660

- \triangleright recall: under quadratic loss function the optimal point forecast is conditional mean, $f_{t,h} = \mu_{t+h|t} = E(Y_{t+h}|I_t)$
- \triangleright we next analyze this optimal forecast under quadratic loss function for $h = 1, 2, \ldots$
- \triangleright we will see that forecasting with an MA(1) is rather limited by the very short memory of the process - for $h > 1$ the optimal forecast is identical to the unconditional mean of the process

 \triangleright for MA(1) model and forecasting horizon $h = 1$ we have

i. optimal point forecast

$$
f_{t,1} = \mu_{t+1|t} = E(Y_{t+1}|I_t) = E(\mu + \varepsilon_{t+1} + \theta \varepsilon_t) = \mu + \theta \varepsilon_t
$$

ii. 1-period-ahead forecast error

$$
e_{t,1} = Y_{t+1} - f_{t,1} = \mu + \varepsilon_{t+1} + \theta \varepsilon_t - \mu - \theta \varepsilon_t = \varepsilon_{t+1}
$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$
\sigma_{t+1|t}^2 = var(e_{t+1}) = \sigma_{\varepsilon}^2
$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming *εt* is normally distributed we have

$$
f(Y_{t+1}|I_t) \sim N(\mu + \theta \varepsilon_t, \sigma_{\varepsilon}^2)
$$

v. using the density forecast we can construct interval forecasts - since for *Z* ∼ *N*(0, 1) we have $P(-1.96 \le Z \le 1.96) = 0.95$, the 95% interval forecast for Y_{t+1} is

$$
\mu_{t+1|t} \pm 1.96\sigma_{t+1|t} = (\mu_{t+1|t} - 1.96\sigma_{t+1|t}, \mu_{t+1|t} + 1.96\sigma_{t+1|t})
$$

- \triangleright for MA(1) model and forecasting horizon $h = 2$ we have
- i. optimal point forecast

$$
f_{t,2} = \mu_{t+2|t} = E(Y_{t+2}|I_t) = E(\mu + \varepsilon_{t+2} + \theta \varepsilon_{t+1}) = \mu
$$

ii. 2-period-ahead forecast error

$$
e_{t,2} = Y_{t+2} - f_{t,2} = \mu + \varepsilon_{t+2} + \theta \varepsilon_{t+1} - \mu = \varepsilon_{t+2} + \theta \varepsilon_{t+1}
$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$
\sigma_{t+2|t}^2 = var(e_{t+2}) = (1+\theta^2)\sigma_{\varepsilon}^2
$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming *εt* is normally distributed we have

$$
f(Y_{t+2}|I_t) \sim N(\mu, (1+\theta^2)\sigma_{\varepsilon}^2)
$$

- \triangleright for MA(1) model and forecasting horizon $h = s$ we have
- i. optimal point forecast

$$
f_{t,s} = \mu_{t+s|t} = E(Y_{t+s}|I_t) = \mu
$$

ii. *s*-period-ahead forecast error

$$
e_{t,s} = Y_{t+s} - f_{t,s} = \mu + \varepsilon_{t+s} + \theta \varepsilon_{t+s-1} - \mu = \varepsilon_{t+s} + \theta \varepsilon_{t+s-1}
$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$
\sigma_{t+s|t}^2 = var(e_{t+s}) = (1+\theta^2)\sigma_{\varepsilon}^2
$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming *εt* is normally distributed we have

$$
f(Y_{t+s}|I_t) \sim N(\mu, (1+\theta^2)\sigma_{\varepsilon}^2)
$$

Forecasting 5-year Constant Maturity Yield on Treasury Securities:

- ▶ AC and PAC suggest that the Percentage Change in 5-year Constant Maturity Yield on Treasury Securities follows an MA(1) process
- \triangleright we will use 1953M5-2007M11 as estimation sample and 2007M12-2008M4 as prediction sample
- \triangleright we will thus construct forecast for $h = 1, 2, \ldots, 5$ so 1-step to 5-step ahead forecasts
- $▶$ to estimate $θ$ in EViews choose **Object** $→$ **New Object** $→$ **Equation**, in equation specification write **dy c MA(1)**, and in sample 1953M5-2007M11

 \blacktriangleright afterwards to create a multistep forecast in EViews open the equation and choose $\mathsf{Proc} \to \mathsf{Forecast},$ enter name dyf_se for standard deviation $\sigma_{t+h|t}$ into "S.E. (optional)", change forecast sample to 2007M12-2008M4, and select "Dynamic forecast" method in the forecast window

 \triangleright to construct the lower and the upper bounds of the 95% confidence interval $(\mu_{t+h|t}-1.96\sigma_{t+h|t},\mu_{t+h|t}+1.96\sigma_{t+h|t})$ choose $\textbf{Object}\rightarrow\textbf{Generator}$ series set sample to 2007M12-2008M4 and enter first **dyf_lb = dyf - 1.96**∗**dyf_se** and then the second time $dyf_{ub} = dyf + 1.96*dyf_{se}$

Forecasting 5-year Constant Maturity Yield on Treasury Securities:

- \triangleright consider now an MA(2) process $Y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$
- **I** two simulations, each 200 observations of $MA(2)$, with $\theta_1 = 1.70, \theta_2 = 0.72$ and with $\theta_1 = -1, \theta_2 = 0.25$, in addition to $\mu = 2$ and $\varepsilon_t \sim N(0, 0.25)$

unconditional population mean is time invariant

$$
E(Y_t) = E(\mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}) = \mu
$$

 \blacktriangleright unconditional variance is also time invariant $var(Y_t) = E(Y_t - E(Y_t))^2 = E(\varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2})^2 = (1 + \theta_1^2 + \theta_2^2)\sigma_{\varepsilon}^2$

- **If** first two components in sample AC function are different from zero $\hat{\rho}_1 \neq 0$, $\hat{\rho}_2 \neq 0$, remaining autocorrelations are equal to zero, $\hat{\rho}_k = 0$ for $k > 2$
- ▶ sample PAC function decreases toward zero

population autocovariance of order 1

$$
\gamma_1 = E[(Y_t - \mu)(Y_{t-1} - \mu)] = (\theta_1 + \theta_1 \theta_2)\sigma_{\varepsilon}^2
$$

thus for population autocorrelation of order 1 we have

$$
\rho_1 = \frac{\gamma_1}{\gamma_0} = \frac{\theta_1 + \theta_1 \theta_2}{1 + \theta_1^2 + \theta_2^2}
$$

population autocovariance of order $k = 2$

$$
\gamma_2 = E[(Y_t - \mu)(Y_{t-2} - \mu)] = \theta_2 \sigma_{\varepsilon}^2
$$

thus for population autocorrelation of order $k = 2$ we have

$$
\rho_2 = \frac{\gamma_2}{\gamma_0} = \frac{\theta_2}{1 + \theta_1^2 + \theta_2^2}
$$

 \blacktriangleright autocorrelations of higher order are all equal to zero

$$
\gamma_k = E[(Y_t - \mu)(Y_{t-k} - \mu)] = 0
$$

thus for population autocorrelation of order *k >* 2 we have

$$
\rho_k = \frac{\gamma_k}{\gamma_0} = 0
$$

ightharpoontriangleright since autocorrelation function does not depend on time, $MA(2)$ is covariance stationary process

- \triangleright for MA(2) model and forecasting horizon $h = 1$ we have
- i. optimal point forecast

 $f_{t,1} = \mu_{t+1|t} = E(Y_{t+1}|I_t) = E(\mu + \varepsilon_{t+1} + \theta_1 \varepsilon_t + \theta_2 \varepsilon_{t-1}) = \mu + \theta_1 \varepsilon_t + \theta_2 \varepsilon_{t-1}$

ii. 1-period-ahead forecast error

$$
e_{t,1} = Y_{t+1} - f_{t,1} = \mu + \varepsilon_{t+1} + \theta_1 \varepsilon_t + \theta_2 \varepsilon_{t-1} - \mu - \theta_1 \varepsilon_t - \theta_2 \varepsilon_{t-1} = \varepsilon_{t+1}
$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$
\sigma_{t+1|t}^2 = var(e_{t+1}) = \sigma_{\varepsilon}^2
$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming *εt* is normally distributed we have

$$
f(Y_{t+1}|I_t) \sim N(\mu + \theta_1 \varepsilon_t + \theta_2 \varepsilon_{t-1}, \sigma_{\varepsilon}^2)
$$

v. using the density forecast we can construct interval forecasts - since for *Z* ∼ *N*(0,1) we have $P(-1.96 \le Z \le 1.96) = 0.95$, the 95% interval forecast for Y_{t+1} is

$$
\mu_{t+1|t} \pm 1.96\sigma_{t+1|t} = (\mu_{t+1|t} - 1.96\sigma_{t+1|t}, \mu_{t+1|t} + 1.96\sigma_{t+1|t})
$$

- \triangleright for MA(2) model and forecasting horizon $h = 2$ we have
- i. optimal point forecast

$$
f_{t,2} = \mu_{t+2|t} = E(Y_{t+2}|I_t) = E(\mu + \varepsilon_{t+2} + \theta_1 \varepsilon_{t+1} + \theta_2 \varepsilon_t) = \mu + \theta_2 \varepsilon_t
$$

ii. 2-period-ahead forecast error

$$
e_{t,2} = Y_{t+2} - f_{t,2} = \mu + \varepsilon_{t+2} + \theta_1 \varepsilon_{t+1} + \theta_2 \varepsilon_t - \mu - \theta_2 \varepsilon_t = \varepsilon_{t+2} + \theta_1 \varepsilon_{t+1}
$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$
\sigma_{t+2|t}^2 = var(e_{t+2}) = (1 + \theta_1^2)\sigma_{\varepsilon}^2
$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming *εt* is normally distributed we have

$$
f(Y_{t+2}|I_t) \sim N(\mu + \theta_2 \varepsilon_t, (1 + \theta_1^2)\sigma_{\varepsilon}^2)
$$

- \triangleright for MA(2) model and forecasting horizon $h = s$ with $s > 2$ we have
- i. optimal point forecast

$$
f_{t,s} = \mu_{t+s|t} = E(Y_{t+s}|I_t) = \mu
$$

ii. *s*-period-ahead forecast error

 $e_{t,s} = Y_{t+s} - f_{t,s} = \mu + \varepsilon_{t+s} + \theta \varepsilon_{t+s-1} - \mu = \varepsilon_{t+s} + \theta_1 \varepsilon_{t+s-1} + \theta_2 \varepsilon_{t+s-2}$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$
\sigma_{t+s|t}^2 = var(e_{t+s}) = (1+\theta_1^2+\theta_2^2)\sigma_{\varepsilon}^2
$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming *εt* is normally distributed we have

$$
f(Y_{t+s}|I_t) \sim N(\mu, (1+\theta_1^2+\theta_2^2)\sigma_{\varepsilon}^2)
$$

If forecasting with an MA(2) is thus limited by the short memory - for $h > 2$ the optimal forecast is identical to the unconditional mean of the process

- \triangleright for MA(*q*) the AC and PAC functions satisfy similar properties as those for MA(2) process
- **If** first *q* components in sample AC function are different from zero $\hat{\rho}_k \neq 0$ for $k = 1, 2, \ldots, q$
- **I** remaining autocorrelations are equal to zero $\hat{\rho}_k = 0$ for $k > q$
- **In sample PAC function decreases toward zero (in exponential or in oscillating pattern)**
- **If** forecasting with an $MA(q)$ is quite limited for $h > q$ the optimal forecast is identical to the unconditional mean of the process

Forecasting Growth of Employment in Nonfarm Business Sector

- ▶ download [PRS85006013.csv](http://myweb.ttu.edu/jduras/files/teaching/eco4306/PRS85006013.csv) obtained from [fred.stlouisfed.org/series/PRS85006013,](https://fred.stlouisfed.org/series/PRS85006013) import it into EViews as time series emp
- \blacktriangleright generate time series gemp as percentage change of emp
- \blacktriangleright AC and PAC suggest that MA(3) process $y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \theta_3 \varepsilon_{t-3}$ can be used to model gemp
- \triangleright we will use 1947Q2-2014Q4 as estimation sample and 2015Q1-2018Q4 as prediction sample
- \triangleright we will thus construct forecast for $h = 1, 2, \ldots, 16$ so 1-step to 16-step ahead forecasts

If first, to estimate parameters μ , θ_1 , θ_2 , θ_3 of the MA(3) process

$$
y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \theta_3 \varepsilon_{t-3}
$$

in EViews choose **Object** → **New Object** → **Equation**, in equation specification write **gemp c MA(1) MA(2) MA(3)**, and in sample write 1947Q2-2014Q4

- \blacktriangleright afterwards to create a multistep forecast in EViews open the equation and choose $\mathsf{Proc} \to \mathsf{Forecast},$ enter name gempf_se for standard deviation $\sigma_{t+h|t}$ into "S.E. (optional)", change forecast sample to 2015Q1-2018Q4, and select "Dynamic forecast" method in the forecast window
- \triangleright to construct the lower and the upper bounds of the 95% confidence interval $(\mu_{t+h|t}-1.96\sigma_{t+h|t},\mu_{t+h|t}+1.96\sigma_{t+h|t})$ choose $\textbf{Object}\rightarrow\textbf{Generator}$ series set sample to 2015Q1-2018Q4 and enter first **gempf_lb = gempf - 1.96**∗**gempf_se** and then the second time $\text{gempf}_\text{u} = \text{gempf} + 1.96$ ^{*} $\text{gempf}_\text{u} =$
- I to construct time series with unconditional mean of gemp choose Object \rightarrow **Generate Series** and enter **gemp_mean = @mean(gemp)**