Eco 4306 Economic and Business Forecasting
Chapter 4: Tools of the Forecaster
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Introduction

» before constructing a forecast based on a time series model, forecaster needs to
decide about three basic elements that guide the production of the forecast
1. Information set
2. Forecast horizon
3. Loss function
» information set will be used to construct conditional density function to be able to
evaluate expectations, and the optimal forecast will minimize the expected loss
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Introduction

example: to forecast the number of new homes built, we need to

(1) construct the information set
P gather relevant up-to-date information for the problem at hand - existing number of
houses, state of the local economy, population inflows, ...
P this information is used to estimate the time series model and construct the forecast
(2) choose forecast horizon: how far into the future to forecast
P 1-month-ahead, 1-quarter-ahead, 1-year-ahead, 10-years-ahead, ...
P this depends on the use of the forecast
» e.g. a policy makers who plans to design or revamp the transportation services of the area or any
other infrastructure is likely to be more interested in long-term predictions of new housing (1 year,
2 years, 5 years) than in short-term predictions (1 month, 1 quarter)
P forecast horizon influences the choice of the frequency of the time series data
P e.g. if our interest is a 1-month-ahead prediction, we may wish to collect monthly data, or if our
interest is a 1-day-ahead forecast, we may collect daily data
(3) decide which loss function best represents the costs associated with forecast errors
P forecast errors will happen and more importantly they will be costly
P costs of underestimation and of overestimation may be of different magnitude
P we will choose a forecast that minimizes the expected loss
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4.1 Information Set

> a univariate information set is the historical time series of the process up to time ¢

It = {yo,y1,y2,. .., Yt}

» a multivariate information set is the collection of several historical time series

It = {0, Y1, Y2, - - -, Yt, O, T1, T2, - ., Tty 20, 21,22, -+ -, 2t }

» for example, to produce a 1-year-ahead forecast for new houses built
P univariate information set is the time series of new houses built in previous years
P multivariate information set may in addition contain the time series for inflows of
population, unemployment in the area, ...

5/30



4.1 Information Set

> forecast f; 5, is constructed as a function of the information set

fen = g(It)
function g(-) represents the time series model that processes the known

information up to time ¢ and from which we produce the forecast of the variable of
interest at a future date t + h
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4.1 Information Set

> some examples of 1-step-ahead forecasts of a process {Y;}

(i) fi,1 =0.8y;

(i) fe,1 =02yt —0.9y¢1

4

m = ———
(i) fi 1+ 0.5y
(iV) ft,l = 1.8yt — 0.5yr—1 + 0.4z + 0.3z¢—1 + 0.6z¢_2

» in (i), (ii) and (iii) the information set is univariate, in (iv) it is multivariate
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4.1 Information Set

» predictability of a time series depends on how useful the information set is

» sometimes univariate information sets are not very helpful, and we need to resort
to multivariate information sets

» for example, stock returns are very difficult to predict on the basis of past stock
returns alone, but when we add other information such as firm size, price-earnings
ratio, cash flows, and so on, we find some predictability

> some time series (e.g. stock returns, interest rates, exchange rates, ...) are
inherently very difficult to predict due to

P lack of understanding of the phenomenon
P lack of statistical methods
P high uncertainty making it difficult to separate information from noise
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4.2 Forecast Horizon

> we distinguish between a short-term forecast and a long-term forecast

in economics up to a 1-year-ahead prediction is a short-term forecast, forecasts
between 1 and 10 years are considered short/medium term or medium/long term,
and a 10-year-ahead and longer prediction is a long-term forecast

» short-, medium-, and long-term forecast are functions of the frequency of the data
and of the properties of the model

> we distinguish between 1-step ahead forecast f; 1 and multistep forecast f; ; for
h>1
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4.2.1 Forecasting Environments

> suppose that we have a time series with T observations, {y1,y2,...,y1}
» we divide the sample into two parts: estimation sample and prediction sample

estimate the model using observations in estimation sample, with ¢t < T
observations, {y1,y2,...,Yt}

» we then assess the performance of models in-sample and out-of-sample

in-sample assessment - evaluate goodness of the model (perform specification
tests) using observations from 1 to ¢

P out-of-sample assessment - evaluate the forecasting ability of the model using
observations from t + 1 to T'

P e.g. if we are interested in evaluating accuracy of 1-step-ahead forecasts we first produce

a sequence of out-of-sample 1-step-ahead forecasts f;4 ;1 where j =0,1,... T —t —1
for {Yit1, Yeq2,..., Y7}

P we next compute a sequence of 1-step-ahead forecast errors €141 = Ye4j+1 — fr4j.1
forj=0,1,..., T —t—1

P finally, we assess the accuracy of the forecast by plugging the forecast errors into the loss
function and calculating the average or the maximum loss

10/30



4.2.1 Forecasting Environments

P three forecasting schemes: recursive, rolling, and fixed
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4.2.1 Forecasting Environments

recursive forecasting scheme

>

v

repeatedly increase estimation sample by one observation, reestimate the model
with extra observation, and compute a 1-step ahead forecast

estimation sample keeps expanding until the prediction sample is exhausted

this yields a sequence of 1-step-ahead forecasting errors {es 1,€¢41,1,...e7—-1,1}
forecast errors are then used to calculate measures of forecast accuracy based on
the loss function
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4.2.1 Forecasting Environments
recursive forecasting scheme
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4.2.1 Forecasting Environments

rolling forecasting scheme

>

>

vVVYY

similar to recursive scheme but estimation sample always contains the same
number of observations

thus at ¢ it contains observations 1 to t, at t + 1 observations 2 to t + 1, at time
t + 2 observations 3to ¢t + 2, ...

model is reestimated for each rolling sample, and 1-step-ahead forecast is produced
estimation sample is rolling until the prediction sample is exhausted

this yields collection of 1-step-ahead forecasting errors {e:1,€e¢41,1,...,er—1,1}
forecast errors are then used to calculate measures of forecast accuracy based on
the loss function
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4.2.1 Forecasting Environments

rolling forecasting scheme
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4.2.1 Forecasting Environments

fixed forecasting scheme

»

>

>

model is estimated only once using the estimation sample that contains the first ¢
observations

information set is updated but model is not reestimated - each one step ahead
forecast is thus constructed using same parameters

for instance, at time ¢ + 1, information set contains one more observation, which
will contribute to the construction of the 1-step-ahead forecast but will not be used
to reestimate model parameters

information set is updated until the prediction sample is exhausted

this again yields collection of 1-step-ahead forecasting errors
{et,1,€t41,1,---,e7—1,1}

forecast errors are then used to calculate measures of forecast accuracy based on
the loss function

16/30



4.2.1 Forecasting Environments
fixed forecasting scheme
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4.2.1 Forecasting Environments

advantages and disadvantages of the three schemes

P recursive scheme

P incorporates as much information as possible in the estimation of the model

P advantageous if the model is stable over time

P if the data have structural breaks, model’s stability is in jeopardy and so is the forecast
» rolling scheme

P avoids the potential problem with the model's stability

P more robust against structural breaks in the data

P does not make use of all the data
» fixed scheme

P fast and convenient because - there is one and only one estimation

P does not allow for parameter updating, so again problem with structural breaks and

model’s stability
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4.3 Loss function

what the best forecast is depends on the purpose of the forecast, its intended use

“Would you tell me, please, which way | ought to go from here?"

“That depends a good deal on where you want to get to,” sad the Cat

“I don't much care where —" said Alice.

“Then it doesn't matter which way you go," sad the Cat

"~ 50 long as | get somewhere,” Alice added as an explanaton.

“Oh, you're sure to do that," said the Cat, *if you only walk long enough "
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4.3 Loss function

» example: suppose you live in Riverside, CA about 90 miles east of Los Angeles

> you are departing on a business trip from Los Angeles International Airport (LAX)
to meet with a client in New York

» you need to forecast how many hours it takes to get from Riverside to LAX

» information set I; will contain the distance between Riverside and LAX, rush hours
in the area highways, construction work in the area, time needed for check-in at
LAX, time needed for security check at LAX

P suppose the actual time could be either 5 hours or 3 hours with equal probability

» suppose your forecast is the average time needed f; 1 = E(Y;41|It) = 4 hours

3
5

1

fti=4 Yt+1 = { 1

= et1=Yt+1 — fta = {
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4.3 Loss function

P suppose that it takes 5 hours to get to LAX and so you miss your flight

> the forecast error is e;;1 = 1 and the potential costs associated with it are

need to wait at the airport to hope to be able to get on the next flight
alternatively, purchase another ticket with a different airline

need to spend extra money on food, hotel

stressed and/or in bad mood for the rest of the day

professional reputation might be damaged if you miss the meeting with your client
prospective business deal might be lost

VYVVYYY

P suppose that it takes 3 hours to get to LAX and you thus and an hour spare at LAX
> the forecast error is e;;1 = —1 and the potential costs associated with it are

P having to wait in a noisy environment, uncomfortable chairs, crowded space, . ..
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4.3 Loss function

P note that positive and negative errors are of same magnitude, but costs are not
your loss function is thus asymmetric

taking into account your loss function, you decide that it makes sense for you to
change your forecast and instead of average time f;,1 = 4 choose the maximum
time thus f; 1 = 5 hours

P as this example illustrates, the forecast will depend on the loss function that
the forecaster is facing

» the forecaster thus must know the loss function before making the forecast

note also that in the example if you are avoiding positive forecast errors and always
arrive at airport too early, the average forecast errors will be negative, not zero

> it is rational to consistently make biased forecasts if loss function is asymmetric
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4.3 Loss function

» loss function L(e; ;) is the evaluation of costs associated with the forecast error
three properties that loss functions need to satisfy

. if the forecast error is zero, the loss is zero:

) L(et,n) =0 when e, , =0

ii. loss function is a non-negative function with minimum value equal to zero:
L(et,h). 2 0 for all e, p, _ . . _ . o
for positive errors the loss is monotonically increasing, for negative errors it is
monotonically decreasing:

if e(l) > e(2> >0 then L(e (1)) > L(e <2))

if e(l) < 6(2) <0 then L(e EI,)L) > L(e (2))
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4.3.1 Some Examples of Loss Functions

Symmetric Loss Functions

» sign of the forecast errors is irrelevant, positive or negative errors of the same
magnitude have identical costs

Quadratic loss function Absolute value loss function
Le)=ae’, a>0 Le)=ale|, a>0
L(e) L(e)

>
L(e)=L(—e) L(e)=L(—e)
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4.3.1 Some Examples of Loss Functions

Asymmetric Loss Functions

Linex function

L(e)=exp(ae)—ae—1, a=0

Lin-lin function

{ae e>0
L(e)=

ble| e<0

L(e)

0 €

b>a— L(-e)>L(e)
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4.3.1 Some Examples of Loss Functions

P quadratic loss function is the most prevalent in practice - it is mathematically
tractable

» most of the time, however economic agents have asymmetric loss functions

'S

>

example with trip to LAX airport - for most people it is less costly to wait at the airport
than to miss a flight

government planning spending and forecasting tax revenues - deficit and surplus of the
same size are not viewed the same by most politicians

Fed policymakers deciding about interest rate, facing inflation vs unemployment tradeoff -
monetary hawks and inflation doves

investment fund managers making predictions of asset returns in their portfolio -
underperforming by 5% vs overperforming 5%

financial intermediaries are requited to make capital provisions as a preventive measure
against insolvency caused by loan defaults
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4.3.3 Optimal Forecast: An Introduction

P> we now put all three components together - information set I;, forecast horizon h,
and loss function L(es )

» recall: e, = yirn — fi,n and yg4p is future value unknown at time ¢, of random
variable Y;4p, which has a conditional probability density function f(vy¢+p|l¢)

» because the loss function depends on a random variable, it is also a random
variable, thus we can write the expected loss as

E(L(y¢4n — ft,n) = /L(yt+h — fe.n) fWenlIe)dye,n

> the optimal forecast is f; ;, which minimizes the above expected loss

min E(L(ys+n — fe,n))

t,h
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4.3.3 Optimal Forecast: An Introduction

» if the loss function is quadratic, the optimal forecast that is minimizing the
expected loss is

ft*,h = Htth|t = E(yt+h|ft) = /yt+hf(yt+h|1t)dyt,h

» we will discuss the optimal forecast under various symmetric and asymmetric loss
function in more detail when we get to Chapter 9
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4.3.3 Optimal Forecast: An Introduction

Symmetric Loss Functions - Quadratic

Ley=ae’, a>0
Y, Yx+h

fT,11)

.
fon= H e

1 1 1 1
1 2 3 4 7T t+h time
«———— Informatonset ———»
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4.3.3 Optimal Forecast: An Introduction

Asymmetric Loss Functions - Linex

L(e)=exp(ae)—ae-1, a<0

Ve t4h
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