
Eco 4306 Economic and Business Forecasting
Chapter 4: Tools of the Forecaster
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Introduction

I before constructing a forecast based on a time series model, forecaster needs to
decide about three basic elements that guide the production of the forecast
1. Information set
2. Forecast horizon
3. Loss function

I information set will be used to construct conditional density function to be able to
evaluate expectations, and the optimal forecast will minimize the expected loss
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Introduction

Forecasting Problem
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Introduction

example: to forecast the number of new homes built, we need to

(1) construct the information set
I gather relevant up-to-date information for the problem at hand - existing number of

houses, state of the local economy, population inflows, . . .
I this information is used to estimate the time series model and construct the forecast

(2) choose forecast horizon: how far into the future to forecast
I 1-month-ahead, 1-quarter-ahead, 1-year-ahead, 10-years-ahead, . . .
I this depends on the use of the forecast

I e.g. a policy makers who plans to design or revamp the transportation services of the area or any
other infrastructure is likely to be more interested in long-term predictions of new housing (1 year,
2 years, 5 years) than in short-term predictions (1 month, 1 quarter)

I forecast horizon influences the choice of the frequency of the time series data
I e.g. if our interest is a 1-month-ahead prediction, we may wish to collect monthly data, or if our

interest is a 1-day-ahead forecast, we may collect daily data
(3) decide which loss function best represents the costs associated with forecast errors

I forecast errors will happen and more importantly they will be costly
I costs of underestimation and of overestimation may be of different magnitude
I we will choose a forecast that minimizes the expected loss
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4.1 Information Set

I a univariate information set is the historical time series of the process up to time t

It = {y0, y1, y2, . . . , yt}

I a multivariate information set is the collection of several historical time series

It = {y0, y1, y2, . . . , yt, x0, x1, x2, . . . , xt, z0, z1, z2, . . . , zt}

I for example, to produce a 1-year-ahead forecast for new houses built
I univariate information set is the time series of new houses built in previous years
I multivariate information set may in addition contain the time series for inflows of

population, unemployment in the area, . . .
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4.1 Information Set

I forecast ft,h is constructed as a function of the information set

ft,h = g(It)

function g(·) represents the time series model that processes the known
information up to time t and from which we produce the forecast of the variable of
interest at a future date t+ h

6 / 30



4.1 Information Set

I some examples of 1-step-ahead forecasts of a process {Yt}

(i) ft,1 = 0.8yt

(ii) ft,1 = 0.2yt − 0.9yt−1

(iii) ft,1 =
4

1 + 0.5yt

(iv) ft,1 = 1.8yt − 0.5yt−1 + 0.4xt + 0.3xt−1 + 0.6xt−2

I in (i), (ii) and (iii) the information set is univariate, in (iv) it is multivariate
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4.1 Information Set

I predictability of a time series depends on how useful the information set is
I sometimes univariate information sets are not very helpful, and we need to resort

to multivariate information sets
I for example, stock returns are very difficult to predict on the basis of past stock

returns alone, but when we add other information such as firm size, price-earnings
ratio, cash flows, and so on, we find some predictability

I some time series (e.g. stock returns, interest rates, exchange rates, . . . ) are
inherently very difficult to predict due to
I lack of understanding of the phenomenon
I lack of statistical methods
I high uncertainty making it difficult to separate information from noise

8 / 30



4.2 Forecast Horizon

I we distinguish between a short-term forecast and a long-term forecast
I in economics up to a 1-year-ahead prediction is a short-term forecast, forecasts

between 1 and 10 years are considered short/medium term or medium/long term,
and a 10-year-ahead and longer prediction is a long-term forecast

I short-, medium-, and long-term forecast are functions of the frequency of the data
and of the properties of the model

I we distinguish between 1-step ahead forecast ft,1 and multistep forecast ft,h for
h > 1

9 / 30



4.2.1 Forecasting Environments

I suppose that we have a time series with T observations, {y1, y2, . . . , yT }
I we divide the sample into two parts: estimation sample and prediction sample
I estimate the model using observations in estimation sample, with t < T

observations, {y1, y2, . . . , yt}
I we then assess the performance of models in-sample and out-of-sample
I in-sample assessment - evaluate goodness of the model (perform specification

tests) using observations from 1 to t
I out-of-sample assessment - evaluate the forecasting ability of the model using

observations from t+ 1 to T
I e.g. if we are interested in evaluating accuracy of 1-step-ahead forecasts we first produce

a sequence of out-of-sample 1-step-ahead forecasts ft+j,1 where j = 0, 1, . . . T − t− 1
for {Yt+1, Yt+2, . . . , YT }

I we next compute a sequence of 1-step-ahead forecast errors et+j,1 = yt+j+1 − ft+j,1
for j = 0, 1, . . . , T − t− 1

I finally, we assess the accuracy of the forecast by plugging the forecast errors into the loss
function and calculating the average or the maximum loss
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4.2.1 Forecasting Environments

I three forecasting schemes: recursive, rolling, and fixed
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4.2.1 Forecasting Environments

recursive forecasting scheme
I repeatedly increase estimation sample by one observation, reestimate the model

with extra observation, and compute a 1-step ahead forecast
I estimation sample keeps expanding until the prediction sample is exhausted
I this yields a sequence of 1-step-ahead forecasting errors {et,1, et+1,1, . . . eT−1,1}
I forecast errors are then used to calculate measures of forecast accuracy based on

the loss function
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4.2.1 Forecasting Environments
recursive forecasting scheme
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4.2.1 Forecasting Environments

rolling forecasting scheme
I similar to recursive scheme but estimation sample always contains the same

number of observations
I thus at t it contains observations 1 to t, at t+ 1 observations 2 to t+ 1, at time
t+ 2 observations 3 to t+ 2, . . .

I model is reestimated for each rolling sample, and 1-step-ahead forecast is produced
I estimation sample is rolling until the prediction sample is exhausted
I this yields collection of 1-step-ahead forecasting errors {et,1, et+1,1, . . . , eT−1,1}
I forecast errors are then used to calculate measures of forecast accuracy based on

the loss function
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4.2.1 Forecasting Environments
rolling forecasting scheme
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4.2.1 Forecasting Environments

fixed forecasting scheme
I model is estimated only once using the estimation sample that contains the first t

observations
I information set is updated but model is not reestimated - each one step ahead

forecast is thus constructed using same parameters
I for instance, at time t+ 1, information set contains one more observation, which

will contribute to the construction of the 1-step-ahead forecast but will not be used
to reestimate model parameters

I information set is updated until the prediction sample is exhausted
I this again yields collection of 1-step-ahead forecasting errors
{et,1, et+1,1, . . . , eT−1,1}

I forecast errors are then used to calculate measures of forecast accuracy based on
the loss function
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4.2.1 Forecasting Environments
fixed forecasting scheme
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4.2.1 Forecasting Environments

advantages and disadvantages of the three schemes
I recursive scheme

I incorporates as much information as possible in the estimation of the model
I advantageous if the model is stable over time
I if the data have structural breaks, model’s stability is in jeopardy and so is the forecast

I rolling scheme
I avoids the potential problem with the model’s stability
I more robust against structural breaks in the data
I does not make use of all the data

I fixed scheme
I fast and convenient because - there is one and only one estimation
I does not allow for parameter updating, so again problem with structural breaks and

model’s stability
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4.3 Loss function

what the best forecast is depends on the purpose of the forecast, its intended use
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4.3 Loss function

I example: suppose you live in Riverside, CA about 90 miles east of Los Angeles
I you are departing on a business trip from Los Angeles International Airport (LAX)

to meet with a client in New York
I you need to forecast how many hours it takes to get from Riverside to LAX
I information set It will contain the distance between Riverside and LAX, rush hours

in the area highways, construction work in the area, time needed for check-in at
LAX, time needed for security check at LAX

I suppose the actual time could be either 5 hours or 3 hours with equal probability
I suppose your forecast is the average time needed ft,1 = E(Yt+1|It) = 4 hours

ft,1 = 4 yt+1 =
{3

5
⇒ et,1 = yt+1 − ft,1 =

{ 1
−1
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4.3 Loss function

I suppose that it takes 5 hours to get to LAX and so you miss your flight
I the forecast error is et,1 = 1 and the potential costs associated with it are

I need to wait at the airport to hope to be able to get on the next flight
I alternatively, purchase another ticket with a different airline
I need to spend extra money on food, hotel
I stressed and/or in bad mood for the rest of the day
I professional reputation might be damaged if you miss the meeting with your client
I prospective business deal might be lost

I suppose that it takes 3 hours to get to LAX and you thus and an hour spare at LAX
I the forecast error is et,1 = −1 and the potential costs associated with it are

I having to wait in a noisy environment, uncomfortable chairs, crowded space, . . .
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4.3 Loss function

I note that positive and negative errors are of same magnitude, but costs are not
I your loss function is thus asymmetric
I taking into account your loss function, you decide that it makes sense for you to

change your forecast and instead of average time ft,1 = 4 choose the maximum
time thus ft,1 = 5 hours

I as this example illustrates, the forecast will depend on the loss function that
the forecaster is facing

I the forecaster thus must know the loss function before making the forecast
I note also that in the example if you are avoiding positive forecast errors and always

arrive at airport too early, the average forecast errors will be negative, not zero
I it is rational to consistently make biased forecasts if loss function is asymmetric
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4.3 Loss function

I loss function L(et,h) is the evaluation of costs associated with the forecast error
I three properties that loss functions need to satisfy

i. if the forecast error is zero, the loss is zero:
L(et,h) = 0 when et,h = 0

ii. loss function is a non-negative function with minimum value equal to zero:
L(et,h) ≥ 0 for all et,h

iii. for positive errors the loss is monotonically increasing, for negative errors it is
monotonically decreasing:

if e
(1)
t,h

> e
(2)
t,h

> 0 then L(e(1)
t,h

) > L(e(2)
t,h

)

if e
(1)
t,h

< e
(2)
t,h

< 0 then L(e(1)
t,h

) > L(e(2)
t,h

)
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4.3.1 Some Examples of Loss Functions

Symmetric Loss Functions
I sign of the forecast errors is irrelevant, positive or negative errors of the same

magnitude have identical costs
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4.3.1 Some Examples of Loss Functions

Asymmetric Loss Functions
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4.3.1 Some Examples of Loss Functions

I quadratic loss function is the most prevalent in practice - it is mathematically
tractable

I most of the time, however economic agents have asymmetric loss functions
I example with trip to LAX airport - for most people it is less costly to wait at the airport

than to miss a flight
I government planning spending and forecasting tax revenues - deficit and surplus of the

same size are not viewed the same by most politicians
I Fed policymakers deciding about interest rate, facing inflation vs unemployment tradeoff -

monetary hawks and inflation doves
I investment fund managers making predictions of asset returns in their portfolio -

underperforming by 5% vs overperforming 5%
I financial intermediaries are requited to make capital provisions as a preventive measure

against insolvency caused by loan defaults
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4.3.3 Optimal Forecast: An Introduction

I we now put all three components together - information set It, forecast horizon h,
and loss function L(et,h)

I recall: et,h = yt+h − ft,h and yt+h is future value unknown at time t, of random
variable Yt+h, which has a conditional probability density function f(yt+h|It)

I because the loss function depends on a random variable, it is also a random
variable, thus we can write the expected loss as

E(L(yt+h − ft,h)) =
∫

L(yt+h − ft,h)f(yt+h|It)dyt,h

I the optimal forecast is ft,h which minimizes the above expected loss

min
ft,h

E(L(yt+h − ft,h))
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4.3.3 Optimal Forecast: An Introduction

I if the loss function is quadratic, the optimal forecast that is minimizing the
expected loss is

f∗t,h = µt+h|t = E(yt+h|It) =
∫

yt+hf(yt+h|It)dyt,h

I we will discuss the optimal forecast under various symmetric and asymmetric loss
function in more detail when we get to Chapter 9
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4.3.3 Optimal Forecast: An Introduction

Symmetric Loss Functions - Quadratic
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4.3.3 Optimal Forecast: An Introduction

Asymmetric Loss Functions - Linex
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