
Eco 4306 Economic and Business Forecasting
Chapter 3: Statistics and Time Series
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Outline

I in the time series scenario the sample is just one observation per unit of time, with
no option to obtain more

I question: since we only have one observation per unit of time, how do we
construct sample moments estimators for population moments?

I to deal with this issue introduce the concept of stationarity
I next, we develop tools used to estimate forecasting models for time series that are

stationary
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3.1 Stochastic Process and Time Series

I time series sample: collection of observations ordered by time,
{yt}T

t=1 = {y1, y2, . . . , yT }, where T is the number of periods
I time series plot: graphical representation of the time series sample, with time on

the horizontal axis, and values of the variable of interest on the vertical axis
I example: Dow Jones (DJ) Index monthly data, Closing price at the end of the

month, January 1988 to April 2008, and the corresponding monthly return
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3.1 Stochastic Process and Time Series

recall: a random variable can be characterized in two ways

(1) to fully characterize it, we need to know its probability density function (pdf)
(2) a partial characterization can be obtained using its moments: mean µ, variance σ2,

skewness sk, kurtosis kr, . . .

if we know the pdf, we can calculate the moments, but knowing the moments is not
enough to find the pdf
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3.1 Stochastic Process and Time Series
I recall: random variables are in uppercase, possible outcomes of the random

variable in lowercase
I example: pdf of random variable Y , yearly income - possible outcomes of the

variable are on the horizontal axis, for a given y the area under the curve is the
probability of such an outcome, e.g. 12% of the U.S. population has yearly income
$10,000 or less

I cross-sectional sample {y1, y2, . . . , yn} is obtained by drawing individuals from the
population and recording their income

I cross-sectional sample can then be used to calculate sample moments - e.g. sample
mean ȳn = 1

n

∑n

i=1 yi, sample variance σ̂2
n = 1

n−1
∑n

i=1(yi − ȳ)2, and these
sample moments are unbiased estimators of the population moments
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3.1.1 Stochastic Process

I stochastic process is a collection of random variables indexed by time,
{Yt} = {Y1, Y2, . . . , YT }

I note that we use capital letters - all elements are random variables rather than
single values

I unit of time can be days, weeks, months, years, . . .
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3.1.2 Time Series

I a time series {yt} = {y1, y2, . . . , yT } is a sample realization of a stochastic
process {Yt} = {Y1, Y2, . . . , YT }

I for each period t = 1, 2, . . . , T we observe a single realization yt of the random
variable Yt
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3.1.2 Time Series

I we only observe time series, we never observe the stochastic process
I the data that we find in real life are time series, and our task is to infer the

characteristics of the stochastic process that generated the time series data in
order to build forecasting models

I Dow-Jones Index closing price at the end of month, from January 1988 to April
2008: we observe the time series {yt} = {y1, y2, . . . , y244} corresponding to the
unobserved underlying stochastic process {Yt} = {Y1, Y2, . . . , Y244}
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3.1.2 Time Series

cross-sectional sample
I several observations of the random variable
I we use these observations to compute a cross-sectional sample mean, a

cross-sectional sample variance, . . .

time series sample
I only one observation of the random variable
I cross-sectional moments can not be constructed, we can only construct time

averages
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3.1.2 Time Series

I time averages:
I for a time series {y1, y2, . . . , yT } we can compute a time mean

¯̄y =
1
T

T∑
t=1

yt

or a time variance

¯̄σ2 =
1

T − 1

T∑
t=1

(yt − ¯̄y)2

I but time series may come from stochastic process with potentially different pdfs
over time

I if the stochastic process has different population means {µ1, µ2, . . . , µT } and
different population variances {σ2

1 , σ
2
2 , . . . , σ

2
T }, it is not clear which µ and which

σ2 are approximated by time averages
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3.1.2 Time Series

I two conditions need to be imposed on the behavior of the stochastic process, such
that time averages are meaningful estimators of population averages

I stationarity focuses on the stochastic process (population information); it requires
that the random variables that form the stochastic process have the same
population mean and the same population variance

I ergodicity guarantees that under stationarity as the sample becomes larger the
time averages converge to the population averages, and thus time averages are
good substitutes for cross-sectional averages
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3.2.1 Stationarity
I contrast the time series plot of the Dow-Jones Index with the plot of Dow-Jones

Index returns
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3.2.1 Stationarity

I mean statistic is a measure of centrality, one should expect the value of the Index
to be around the mean value

I the graph of Dow-Jones however shows that the has been growing over time,
without any tendency to revert back over the long run

I in contrast, the mean return of 0.77% is meaningful because there is a tendency to
revert to the mean - the deviations for the mean are not getting larger over time

I time series of the Dow-Jones Index comes from a nonstationary stochastic process
and the time series of Dow-Jones Index returns from a stationary process

13 / 30



3.2.1 Stationarity

I requiring the process to be stationary, means imposing a degree of
homogeneity/similarity in the random variables

I question: how much homogeneity do we need?
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3.2.1 Stationarity

I stochastic process {Yt} is said to be strongly stationary if all random variables
have the same probability density function, that is if

fY1 (y) = fY2 (y) = . . . = fYT
(y)
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3.2.1 Stationarity

I stochastic process {Yt} is said to be first order weakly stationary if all random
variables have the same mean, that is if

µ1 = µ2 = . . . = µT = µ

I stochastic process {Yt} is said to be second order weakly stationary if all random
variables have the same mean and the same variance, and the covariances do not
depend on time, that is if

(i) µ1 = µ2 = . . . = µT = µ

(ii) σ2
1 = σ2

2 = . . . = σ2
T = σ2

(iii) ρYt,Yt−k
= ρk

I second order weakly stationary processes are also called covariance-stationary
processes
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3.2.1 Stationarity

I strong stationarity requirement is very strict - it imposes a very high degree of
homogeneity among the random variables since it requires that all pdfs are identical

I second order weak stationarity imposes fewer requirements on the random variables
than strong stationarity

I under first order weak stationarity probability density functions can vary a lot: they
only need to have same mean, but can differ in variance, skeweness, kurtosis, or
any other higher moment
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3.2.1 Stationarity

I we will first develop forecasting methodology for stationary processes
I in the second half of the semester we will look at statistical testing procedures to

detect nonstationarity in the mean and in the variance and develop forecasting
tools for nonstationary processes

I as a first resource, time series plots are good tools to hint the existence of a
nonstationary mean and variance
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3.2.2 Useful Transformations of Nonstationary Processes
I lag operator L: applying L to Yt yields Yt−1 that is LYt = Yt−1, consequently

we also have LjYt = Yt−j

I using lag operator the first difference of a time series is calculated as
∆yt = yt − yt−1 = yt − Lyt
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3.2.2 Useful Transformations of Nonstationary Processes

first differences of Dow-Jones Index ∆Yt

I mean is constant over time so we have obtained a first order weakly stationary
process

I variance still seems to change with time - series became much more volatile from
1997 to 2008 compared to the beginning of the sample

I transformed process ∆Yt thus does not seem to be covariance-stationary

first differences of Dow-Jones Index after the logarithmic transformation ∆ log Yt

I applying natural log to the Dow-Jones Index does not affect its trending behavior
I by taking first differences of the log transformed series, we obtain a time series that

has a more homogeneous variance than the original series and a mean that is
constant over time

I transformed process ∆ log Yt thus appears to be covariance-stationary
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3.2.2 Useful Transformations of Nonstationary Processes

I percentage return
Rt = 100×

Yt − Yt−1

Yt−1

I if Rt is not very large it can be approximated by taking the first differences of its
logarithm

∆ log Yt = log Yt − log Yt−1 = log
(

Yt

Yt−1

)
= log

(
1 +

Rt

100

)
≈

Rt

100

I in practical applications in economics and finance, it is very common to transform
a nonstationary process by computing the first difference of the logarithm of the
series - such transformation has the interpretation of returns or growth rates
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3.3 A New Tool of Analysis: The Autocorrelation Functions

I two useful tools to detect time patterns: autocorrelation function (ACF) and
partial autocorrelation function (PACF)

I ACF and PACF will be useful to construct time series models for forecasting
I consider stochastic process {Yt} = {Y1, Y2, . . . , YT } and two of its random

variables k periods apart, Yt and Yt−k

I calculate autcorrelation coefficient or order k, the measure of linear association of
Yt with Yt−k

ρYt,Yt−k
=

cov(Yt, Yt−k)√
var(Yt)

√
var(Yt−k)

I autocorrelation function (ACF) is a function that assigns to any two random
variables that are k periods apart their correlation coefficient, ρ : k → ρYt,Yt−k
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3.3 A New Tool of Analysis: The Autocorrelation Functions

I a covariance stationary process, the autocorrelation function can be simplified since
the first and second moments are time invariant, and thus

ρk =
cov(Yt, Yt−k)√

var(Yt)
√
var(Yt−k)

=
γk

γ0

where γk is the autocovariance of order k, and γ0 is the variance of the process,
which is the autocovariance of order zero

I sample autocorrelation function for a covariance stationary process is constructed
using

ρ̂k =
γ̂k

γ̂0
=

1
T −k

∑T

t=k+1(yt − ¯̄y)(yt−k − ¯̄y)
1

T −1
∑T

t=1(yt − ¯̄y)2

where ¯̄y = 1
T

∑T

t=1 yt and ¯̄x = 1
T

∑T

t=1 xt
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3.3 A New Tool of Analysis: The Autocorrelation Functions

I the autocorrelation coefficient ρk is affected by all the random variables between t
and t+ k, that is Yt+1, Yt+2, . . . , Yt+k−1

I if we want to know the autocorrelation between Yt and Yt+k after we had
removed the information in between we need to control for the effects of
Yt+1, Yt+2, . . . , Yt+k−1

I this type of correlation is given by the partial autocorrelation coefficient, to
obtain it consider set of OLS regressions

Yt+k = β0,1 + β1,1Yt+k−1 + εt+k

Yt+k = β0,2 + β1,2Yt+k−1 + β2,2Yt+k−2 + εt+k

Yt+k = β0,3 + β1,3Yt+k−1 + β2,3Yt+k−2 + β3,3Yt+k−3 + εt+k

...
Yt+k = β0,k + β1,kYt+k−1 + β2,kYt+k−2 + β3,kYt+k−3 + . . .+ βk,kYt + εt+k

I estimated coefficients β̂1,1, β̂2,2, . . . , β̂k,k form the sample partial autocorrelation
function (PACF)
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3.3 A New Tool of Analysis: The Autocorrelation Functions

I ACF and PACF are commonly reported in econometric software by plotting the
correlogram

I in EViews you obtain it by opening the series and choosing View → Correlogram
I example: Annual Working Hours per Employee in the United States from 1977 to

2006
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3.3.2 Statistical Tests for Autocorrelation Coefficients

I when we compute the sample ACF we obtain an estimate ρ̂k of the population
parameter ρk

I to test whether some autocorrelation coefficient is zero . . . following null
hypothesis H0 : ρk = 0

I in a large sample ρ̂k is a normal random variable with mean 0 and variance 1/T
when the null hypothesis is true, ρ̂k ∼ N(0, 1/T )

I thus using the t-ratio test, at the customary 5% significance level, we reject the
null hypothesis whenever

|ρ̂k/
√

1/T | > 1.96

I equivalently, the 95% confidence interval is

(ρ̂k − 1.96
√

1/T , ρ̂k + 1.96
√

1/T )

I in EViews correlogram, the dashed lines running vertically in both correlograms are
the bands corresponding to a 95% confidence interval centered at zero

I the autocorrelation coefficients that fall within the bands are statistically zero
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3.3.2 Statistical Tests for Autocorrelation Coefficients

I the following joint hypothesis test

H0 : ρ1 = ρ2 = . . . = ρk = 0 against H1 : ρj 6= 0 for some j ∈ {1, 2, . . . , k}

is evaluated using the Ljung-Box Q-statistic

Qk = T (T + 2)
k∑

j=1

ρ̂2
j

T − j

which under null hypothesis is chi-square distributed with degrees of freedom k, the
number of autocorrelations tested in the null

I rejecting H0 means that some or all autocorrelations up to order k are different
from zero
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3.3.2 Statistical Tests for Autocorrelation Coefficients

I for example, for Annual Working Hours per Employee in the United States from
1977 to 2006, for H0 : ρ1 = ρ2 = ρ3 = 0 we have Q-statistic is Q3 = 22.676 and
the associated p-value is 0 so we strongly reject the null hypothesis
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3.4 Conditional Moments and Time Series: What Lies Ahead

I in regression analysis, the goal is to find E(Y |X) the expected value of dependent
variable Y for a given value of explanatory variable X

I this yields the conditional mean of Y as a function of X, that is, E(Y |X) = g(X)
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3.4 Conditional Moments and Time Series: What Lies Ahead
I in forecasting, regression and conditional moments play an important role -

forecast is a function of conditional moments
I for a stochastic process {Yt} and an information set It = {y1, y2, . . . yt}, our

objective is to construct a forecast for Yt+h, as a function of the information set

ft,h = g(It)

I function g is a function of conditional moments - often the forecast is just the
conditional mean (but sometimes it also depends on the conditional variance)

I thus for instance we can have

ft,h = g1(It) = E(Yt+h|It) = E(Yt+h|yt, yt−1, . . . , y1)

I then, if we specify the regression model as

E(Yt+h|Yt, Yt−1, . . . , Y1) = β0 + β1Yt−1 + β2Yt−2

and estimate it using OLS to obtain β̂0, β̂1, β̂2, we can construct the
1-period-ahead forecast of Yt+1 as

ft,1 = β̂0 + β̂1yt−1 + β̂2yt−2
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